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Abstract

Previous research has established the usefulness of remotely sensed vegetation index (VI)

data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the

spatial dynamics of agriculture in the state of Mato Grosso (MT), Brazil. With these data it

has become possible to track MT agriculture, which accounts for ~85% of Brazilian Amazon

soy production, across periods of several years. Annual land cover (LC) maps support inves-

tigation of the spatiotemporal dynamics of agriculture as they relate to forest cover and gover-

nance and policy efforts to lower deforestation rates. We use a unique, spatially extensive 9-

year (2005–2013) ground reference dataset to classify, with approximately 80% accuracy,

MODIS VI data, merging the results with carefully processed annual forest and sugarcane

coverages developed by Brazil’s National Institute for Space Research to produce LC maps

for MT for the 2001–2014 crop years. We apply the maps to an evaluation of forest and agri-

cultural intensification dynamics before and after the Soy Moratorium (SoyM), a governance

effort enacted in July 2006 to halt deforestation for the purpose of soy production in the Brazil-

ian Amazon. We find the pre-SoyM deforestation rate to be more than five times the post-

SoyM rate, while simultaneously observing the pre-SoyM forest-to-soy conversion rate to be

more than twice the post-SoyM rate. These observations support the hypothesis that SoyM

has played a role in reducing both deforestation and subsequent use for soy production.

Additional analyses explore the land use tendencies of deforested areas and the conceptual

framework of horizontal and vertical agricultural intensification, which distinguishes produc-

tion increases attributable to cropland expansion into newly deforested areas as opposed to

implementation of multi-cropping systems on existing cropland. During the 14-year study

period, soy production was found to shift from predominantly single-crop systems to majority

double-crop systems.
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Introduction

Previous studies have successfully applied vegetation index data from the Moderate Resolution

Imaging Spectroradiometer (MODIS) to the study of agriculture, deforestation, and land

change dynamics at the regional scale in the Brazilian Amazon, especially in the state of Mato

Grosso (MT), which is one of the most dynamic agricultural frontiers in the world. Land cover

(LC) datasets produced from MODIS have been used to study a wide range of human and

environmental dynamics including land change impacts on biogeochemical cycling [1,2], fire

frequency [3,4], and water quality [5,6]; physical geographic limits on agricultural practices

[7–9]; regional socio-economic conditions [10,11]; and relationships among agricultural

intensification, deforestation, and conservation [5,12–17].

Predominantly through LC classification, MODIS data also have been used in assessments

of policy and governance efforts such as the “Soy Moratorium” (hereafter SoyM) designed to

stem deforestation [18–26]. SoyM is an ongoing effort supported by environmental organiza-

tions and large agribusiness companies that involves a pledge not to purchase soy from areas

deforested in the Amazon biome after July 24, 2006 [27]. In May 2016, SoyM was renewed

indefinitely. MT accounts for approximately 85% of the soy grown in the Amazon biome [24].

Some of the most relevant research related to soy production has focused on the fate of

deforested lands to determine the extent that deforestation is driven by soy production. The

studies rely on data from the Program for the Estimation of Deforestation in the Brazilian

Amazon (PRODES; http://www.obt.inpe.br/prodes/index.php) produced by Brazil’s National

Institute for Space Research (INPE) to identify what areas of the Brazilian Amazon have been

deforested each year going back to 1988 but with the most detailed data available beginning in

2000. Researchers typically then use MODIS data to classify post-deforestation lands to deter-

mine whether cropland or pasture replaced forests. In [17] it is reported that crop production

had become a significant factor in deforestation because an increasing amount of cropland was

replacing forests. The authors also report a correlation between increased cropland area and soy

price, implying that increasing demand for soy had a role in causing deforestation. In a related

study [16], this trend is reassessed with similar methods, and it is concluded that deforestation

for soy production decoupled after the 2007 crop year (CY2007 = Aug 06 –Jul 07) based on a

comparison between soy profitability and deforested land use. The authors describe a number

of national and state government-led initiatives that could explain the drop in deforestation and

subsequent decoupling with soy production, and they also mention industry-led initiatives such

as SoyM as a potential factor in diminishing incentives to deforest for soy production. In [24]

the authors argue that the SoyM should be renewed (which it eventually was) and extended spa-

tially to the Cerrado (savanna) biome, based on their analysis of property-level impacts. Post-

deforestation land use analysis using MODIS indicated a sharp decrease in deforestation for soy

production, which they attribute in part to SoyM.

The present study contributes to the pursuit of policy-relevant research on agriculture and

deforestation dynamics in the Amazon using remotely-sensed satellite data and GIS analyses.

Building from our previous class separability study [28], we produce a 14-year LC time series

for MT with a class structure that includes multiple soy and cotton classes in addition to oth-

ers. By contrast, mapping efforts used in [17] and [16] did not seek to distinguish the type of

cropland detected with MODIS, making the necessary assumption that cropland is most likely

soy. This was avoided in [24] where a dataset was created following previous research [25, 26]

that does claim to specifically map soy, but this was only for the part of their analysis that is in

the Amazon (humid forest) biome. Their Cerrado biome analysis was based on a separate

dataset in which all identified cropland is assumed to be soy. Finally, INPE’s PRODES data,

though an extremely valuable research tool, is not without ambiguities and difficulties in its
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use. It is essential to describe how one processes the PRODES data to ensure results can be

reproduced, as there has been a substantial lack of consistency among PRODES-based defores-

tation annual time series that have been independently developed for use in previous studies

(S1 Fig).

The key outcomes of this work are three-fold. (1) Results from our PRODES-based defores-

tation analysis are more consistent with a large, direct SoyM effect on Amazon deforestation

decline in MT than has been previously reported. (2) We create an updateable 14-year LC map

set for MT and make it available for others to use. (3) We provide a detailed assessment of

basic soy and deforestation dynamics in MT with attention to SoyM impacts.

For map production, we use downloadable MODIS Normalized Difference Vegetation Index

(NDVI) time series data [28] and a random forest (RF) classification model [29]. The RF model

is developed using a farmer interview-based ground reference dataset that is unprecedented in its

spatial and temporal coverage, with minimal reliance on the less rigorous technique of visual

interpretation of high resolution imagery to generate reference data. Following the image classifi-

cation, INPE forest and sugarcane map data are overlaid to provide additional class detail. Model

and map accuracy are examined using traditional metrics, probabilistic methods, federal crop sta-

tistics, and a spatially extensive, multi-year roadside dataset. We then utilize the map set to exam-

ine impacts of SoyM on deforestation and forest-to-soy conversion, to look at post-deforestation

land use tendencies, and to examine the degree to which increased agricultural production in

MT is being driven by conversion of forest to cropland (horizontal intensification) as compared

to elevating production on existing cropland (vertical intensification; adapted from [28]).

Study area

MT covers approximately 904,000 km2 and is located in the center of the South American con-

tinent (Fig 1). Three official biomes comprise MT: the Pantanal wetland in the southwest

(61,000 km2), the humid tropical forests of the Amazon in the north (484,000 km2), and the

Cerrado (360,000 km2), a tropical savanna that extends from east to west through the center of

the state. MT experiences a hot, semi-humid to humid climate (Koppen Aw), with a marked

dry season from May through October.

Much of the state’s soils are old, deep, and nutrient poor. With inputs of fertilizer and lime,

well adapted seed varieties, and favorable market conditions in recent years, MT increasingly

has become a major source of agricultural production within Brazil, already a recognized agri-

cultural superpower. According to official statistics published by the Brazilian Institute of

Geography and Statistics (IBGE), during the crop year that ended in 2014, MT produced 28%,

21%, and 54% of Brazilian soybeans, corn, and cotton, respectively, making it the most pro-

ductive Brazilian state for each of these major crops. The practice of increasing productivity

through double cropping (sequentially growing and harvesting two commercial crops per year

on the same land) has become increasingly prevalent across the region since 2000, where a sec-

ond crop (called safrinha in Brazil) (predominantly corn) is planted after soy.

Data and methods

Production of the 14-year (CY2001-2014) land cover time series for MT required a number of

datasets. MODIS NDVI provided the independent variables to use for RF model development,

while ground reference data from two field campaigns and a supplemental data development

exercise provided the dependent variables necessary for model training, including crop type

and pasture/cerrado data from CY2005-2013. Roadside data from three field campaigns repre-

senting CY2013, CY2015, and CY2016 were used for model and map performance evaluation.

INPE PRODES data provided forest cover information for CY2001-2014. INPE Canasat data
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([30]; http://www.dsr.inpe.br/laf/canasat/en/) provided sugarcane cover information for

CY2003 and CY2005-2014. Static urban and water layers were obtained from IBGE.

MODIS NDVI data

250-m, 16-day composite MOD13Q1 MODIS NDVI data covering MT for CY2001-2015 were

downloaded from the Land Processes Distributed Active Archive Center (LP DAAC; https://

lpdaac.usgs.gov/data_access). The data were reprojected from the native MODIS sinusoidal

coordinate system to UTM Zone 21S (WGS84) with 240-m pixel size (5.76 ha/pixel) and a

(0,0) registration coordinate. With 23 images/year (which we treat as regularly spaced) and

using the composite period that begins on 28-July as the first image of the crop year, this

resulted in a MT NDVI time series spanning 15 years and consisting of 345 samples. Data

Fig 1. Study area (Mato Grosso). Forest and cropland geography as of CY2014 are shown along with biome boundaries and the

locations of the ground reference and roadside data points.

https://doi.org/10.1371/journal.pone.0176168.g001
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from CY2015 were used exclusively for LC trajectory examination during final map prepara-

tion for CY2014 (described in section F in S1 Supporting Information), but CY2015 is not

included with the final map set due to the unavailability of required ancillary data at the time

of the analysis. Additional MODIS NDVI data were acquired for CY2016 to use, along with

the CY2015 MODIS data, for independent assessment of the RF model against roadside data

corresponding with these crop years. We use NDVI rather than the Enhanced Vegetation

Index (EVI) because NDVI is a simpler index, and our past research has revealed little differ-

ence in classification efficacy between the two datasets [28].

Ground reference data and roadside data

In October 2009 and again in October 2013, research team members organized meetings with

producers in key agricultural areas of MT and conducted a series of farmer interviews. Follow-

ing the methodology explained in [31], each of these efforts produced a set of field boundary

polygons with annual land cover information from recent crop years (Set 1: 2005–2009, 415

polygons; Set 2: 2010–2013, 191 polygons; see Fig 1 for sample locations). Original land cover

designations were recoded to one of five possible classes [28]: (1) pasture/cerrado; (2) soy-sin-

gle (single crop soybeans, possibly followed by a cover crop); (3) soy-double (double crop soy-

beans, or soybeans followed by a commercial crop, excluding cotton); (4) cotton; and (5) soy-

cotton. The relatively few samples not fitting into one of these bins were discarded. According

to IBGE statistics, crop classes (2)-(5) accounted for more than 95% of MT agricultural land

area in CY2014.

Due to the crop-production focus of the meetings, the pasture/cerrado class was severely

underrepresented in the polygon dataset, and thus a supplemental pasture/cerrado ground ref-

erence dataset was developed using high resolution imagery [12] to increase sample size and to

round out statewide representativeness of the pasture/cerrado data in support of the RF

modeling effort. See crop class counts in Table 1 and accompanying profile plots and separa-

bility statistics in Fig 2. Details regarding ground reference data preparation and supplemental

pasture/cerrado data acquisition are described in sections B and C in S1 Supporting Informa-

tion. Collectively, we refer to the data from the two farmer interview campaigns and the sup-

plemental pasture/cerrado data development efforts as the “ground reference data” (S1

Dataset).

During July 29-August 2, 2013, research team members conducted a roadside survey

through key growing regions of MT, visually identifying pasture/cerrado and agricultural fields

from CY2013 and registering them on a GIS/GPS-enabled tablet. Stopping points generally

were selected randomly as a function of travel time/distance from the previous point, with

some consideration for accessibility as needed. For agricultural fields, stubble or residue from

the most recent vegetative cover was identified, and if non-soy, then the ground was examined

for stubble/residue from a preceding soy crop. Cases where on-the-ground evidence for a pre-

ceding soy crop was not readily apparent were subjected to a MODIS CY2013 vegetation

index profile examination using the Temporal Vegetation Analysis System MODIS visualiza-

tion tool (SATVeg; www.satveg.cnptia.embrapa.br). If the profile exhibited pronounced bimo-

dality suggestive of a preceding soy crop (see soy class profiles in Fig 2), then soy was ascribed

as preceding the identified most recent vegetative cover. Two similar roadside surveys were

conducted gathering points for CY2015 (October 5–9, 2015) and CY2016 (May 21–25, 2016).

While the latter two datasets fall just outside our study period, they are nonetheless useful for

examining the spatiotemporal generality of the RF model. Collectively we refer to all of the

data from the roadside campaigns as the “roadside data” (S2 Dataset). See Fig 1 for roadside

data locations and Table 2 for sample counts by year and by class.
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INPE PRODES data

We prepared annual forest cover layers for CY2001-2014 using INPE PRODES data, which is

a polygon coverage available from http://www.dpi.inpe.br/prodesdigital/prodes.php (down-

load date: 17-Sep-15). The PRODES dataset has tracked deforestation in Brazil since 1988 and

is annually revised and updated by INPE primarily using Landsat imagery. Date-specific (year

and day-of-year) deforestation information, which indicates the acquisition date for the satel-

lite image where deforestation for a particular polygon was first detected, extends back through

calendar year 2000. The PRODES data included forest and deforested polygons. PRODES data

preparation and processing details are provided in section D in S1 Supporting Information.

To maintain consistency with the MODIS time series, we used the same cutoff date (28-July)

as the start of a crop year.

If a polygon was indicated to be deforested during a specific crop year, then this polygon

remains as forest in our land cover map for that crop year and becomes opened up for non-

forest classification in subsequent crop years. For example, with this definition any deforesta-

tion occurring in CY2007 (the first crop year after implementation of SoyM) first shows up as

non-forest in the map for CY2008, and the difference in forest area between the maps from

CY2007 and CY2008 represents the total area that was deforested during CY2007. During the

14-year study period, 87% of the total deforested area occurred within the Amazon biome,

with annual values ranging 83–91%.

INPE Canasat data

INPE Canasat data, which were kindly provided by the dataset stewards for the development

of this work, were used to define annual sugarcane coverages for MT for CY2003 and CY2005-

2014. Coverages for CY2001, CY2002, and CY2004 were developed using Canasat data from

CY2003 and CY2005. Details of this backfill process are described in section E in S1 Support-

ing Information.

Random forest model

An overview of RF and its use for LC classification is provided in [32], highlighting a number

of strengths of this modeling approach (e.g. no assumptions about data distributions, nonlin-

ear, robust to outliers and noise). Anecdotal justification for our decision to use RF is provided

in section A in S1 Supporting Information. In this study, RF model development is based on

the polygonal ground reference dataset, utilized in a GIS framework that incorporates the pure

Table 1. Ground reference data sample counts.

Crop Year Pasture/ Soy- Cotton Soy- Soy- TOTAL

Cerrado Single Double Cotton

2005 104 148 5 94 21 372

2006 103 189 13 107 21 433

2007 106 128 9 151 21 415

2008 104 111 17 185 12 429

2009 107 122 12 180 10 431

2010 8 23 2 58 23 114

2011 7 37 9 76 36 165

2012 7 16 10 80 44 157

2013 8 17 2 120 18 165

TOTAL 554 791 79 1051 206 2681

https://doi.org/10.1371/journal.pone.0176168.t001
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pixel approach [28, 33–35] in which NDVI values from a single interior pixel with a relatively

noise-free NDVI profile are extracted from each homogeneously managed farm field polygon

for years in which cropping practices are known.

MATLAB1 software was used for RF model development, specifically the ‘treebagger’

function. A RF model consists of many small decision trees (DT; 1000 in this case) and a sim-

ple plurality voting strategy for evaluation when presented with a data observation of the inde-

pendent variables (the MODIS profile time series values in this case). Each component DT is

developed independently from a random subset of the candidate predictors (5 out of 23

Fig 2. NDVI profile statistics. Ground reference data MODIS NDVI profile statistics are shown for the mapped classes. Pairwise

Jeffries-Matusita (JM) distance statistics are shown in the upper left panel, which provide an indication of class separability (JM

distance = 0 if classes are completely inseparable, JM distance = 2 if classes are completely separable).

https://doi.org/10.1371/journal.pone.0176168.g002
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MODIS periods in this case) and a bootstrap replica of the training data. Samples not used for

training a particular DT are referred to as ‘out-of-bag’ (OOB) samples for that DT.

Processing steps for map development

The following list summarizes the processing steps used to create the final CY2001-2014 MT

LC map set:

1. Create spatially smoothed RF output:

a. Apply 5-class RF model to MODIS NDVI image stacks

b. Apply one-pass, 3-by-3 modal spatial filter to all years (to despeckle)

2. Apply overlays:

a. Overlay annual PRODES data

b. Overlay annual Canasat data

c. Overlay static urban layer

d. Overlay static water layer

3. Identify and repair spatial and temporal data irregularities (for details, see section F in S1

Supporting Information)

a. Identify and repair PRODES data commission and omission anomalies

b. Identify and repair illogical pixel LC trajectories

Results and discussion

LC maps for CY2001 and CY2014 are shown in Fig 3, the endpoints of our study period.

Table 3 provides annual class area totals used for assessing state-level LC dynamics. In this sec-

tion the outcomes from several evaluations are presented. First, RF model accuracy and map

performance are examined using multiple approaches. Next, LC change dynamics are exam-

ined, with attention to SoyM, post-deforestation land use tendencies, and agricultural

intensification.

Evaluating RF model accuracy and map performance

We examine RF model accuracy and map performance using four assessments. First, to exam-

ine model efficacy, we present OOB accuracy results for the model. Second, to examine proba-

bilistic mapping error, we rescale the OOB results to reflect map proportions, using IBGE crop

Table 2. Roadside data sample counts.

Crop Year Pasture/ Soy- Cotton Soy- Soy- TOTAL

Cerrado Single Double Cotton

2013a 135 82 0 427 71 715

2015 339 186 34 308 57 924

2016 228 189 12 755 258 1442

TOTAL 702 457 46 1490 386 3081

a104 sugarcane points also were collected and are included in the Supplementary Information (S2 Dataset)

https://doi.org/10.1371/journal.pone.0176168.t002
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statistics to support the evaluation and to provide an alternative perspective. Third, to examine

the spatiotemporal generality of the model, we evaluate classification results using the roadside

data. Fourth, to examine crop-specific agreement with federal estimates, we compare annual

state-level soybean and cotton area totals from the classified maps to IBGE crop statistics.

OOB error. One convenience of RF modeling is that an unbiased estimate for model

accuracy can be produced using the OOB samples, which, for our RF setup, essentially is

equivalent to the expected value of a stratified random cross validation with about 2/3 of the

data used for training and 1/3 set aside for validation [29,32]. To compute OOB error, the RF

model is applied to the training data in a manner such that only OOB samples are evaluated

for each particular component DT, which ensures that all predictions from each DT, and thus

from the RF model as a whole, will be out-of-sample.

OOB results from the RF model used in this study produced a Kappa statistic of 0.71 and an

overall accuracy of 79% (Table 4). User’s accuracy values for all five classes are 70% or greater.

As a check on the stability of the overall accuracy estimate, 30 independent, replicated RF opti-

mizations and OOB evaluations were performed, and the overall accuracies were found to be

highly stable (either 79% or 80% in all cases). As a final test, we evaluated the RF modeling pro-

cedure in a rigorous one-year holdout cross validation [28], whereby an RF model was devel-

oped using eight years of ground reference data and applied to the withheld year, repeating

this process nine times such that each year served as a holdout year and then aggregating all of

Fig 3. Mato Grosso land cover for crop years 2001 and 2014. Final LC maps are shown for study period

endpoints CY2001 and CY2014. Biome boundaries, which are overlaid on the LC maps, are labeled on the

inset map. Protected areas (indigenous reserves) are also shown on the LC maps.

https://doi.org/10.1371/journal.pone.0176168.g003

Table 3. Land cover area totals for MT.

Mapped Area (km2)a Area Summaries

Crop Forest Pasture/ Soy- Soy- Cotton Soy- Sugar- All Soyb All All Deforeste

Year Cerrado Single Double Cotton cane Cottonc Croplandd

2001 388,674 472,490 29,889 3,289 3,013 110 1,588 33,288 3,123 37,888 16,821

2002 371,852 487,421 28,652 7,123 1,919 404 1,681 36,179 2,323 39,779 5,612

2003 366,240 488,265 31,671 8,977 1,796 396 1,707 41,044 2,192 44,547 9,114

2004 357,126 497,880 24,600 13,705 2,549 1,196 1,995 39,501 3,745 44,045 14,639

2005 342,488 499,077 40,546 11,764 2,413 733 2,031 53,043 3,146 57,487 7,816

2006 334,671 504,907 40,731 13,492 1,614 1,506 2,131 55,728 3,120 59,473 9,312

2007 325,359 517,584 29,639 20,532 2,477 1,095 2,366 51,265 3,572 56,108 2,457

2008 322,902 513,626 32,316 23,157 2,894 1,518 2,638 56,992 4,412 62,524 2,918

2009 319,984 516,782 33,031 23,315 1,769 1,360 2,810 57,706 3,129 62,285 3,447

2010 316,536 517,332 33,373 26,591 782 1,657 2,782 61,620 2,439 65,184 1,175

2011 315,362 514,961 34,765 26,532 2,282 2,330 2,820 63,627 4,612 68,729 1,054

2012 314,308 516,372 22,752 36,382 1,888 4,477 2,873 63,611 6,365 68,372 725

2013 313,582 509,241 29,039 40,358 489 3,320 3,023 72,716 3,808 76,228 940

2014 312,642 504,525 29,208 43,843 466 5,383 2,984 78,434 5,849 81,884 1,006

aTotal area = 904,226; Water (4,222) and Urban (953) areas were held constant
bSum of Soy-Single, Soy-Double, and Soy-Cotton
cSum of Cotton and Soy-Cotton
dSum of Soy-Single, Soy-Double, Cotton, Soy-Cotton and Sugarcane
e{Deforest during ‘Year’} = {Forest from ‘Year’}–{Forest from ‘Year+1’}; 2015 Forest area = 311,636

https://doi.org/10.1371/journal.pone.0176168.t003
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the holdout year results. We repeated this exhaustive cross validation procedure 30 times,

obtaining an overall accuracy of 77% in every case.

Probabilistic mapping error. Combining all four modelled agricultural classes into a gen-

eral ‘soy/cotton’ class, overall accuracy using the OOB results increases to 96% and Kappa to

0.88. These numbers reflect the RF model’s ability to classify sample data proportioned and

distributed (with respect to NDVI profiles) similarly to the ground reference data. Alterna-

tively, we can scale the OOB confusion matrix values to reflect mapped data proportions

instead of sample proportions [36]. Pasture/cerrado comprises 90% of the classified pixels, so

that class generally will dominate map accuracy assessments. To mitigate this problem, we

excluded map data from the MT municipalities with the least soy/cotton (here defined as total

soy area plus total cotton area, including a double counting of the soy-cotton class). This

increased the soy/cotton proportion in the remaining mapped area and thus soy/cotton influ-

ence on map accuracy statistics. Specifically, for each map year, the 141 municipalities com-

prising MT were sorted by A = max(IBGE soy/cotton area, mapped soy/cotton area). IBGE

annual total crop area estimates were obtained from http://www.sidra.ibge.gov.br. The munici-

palities with the least soy/cotton area (smallest A values) were sequentially excluded until their

cumulative soy/cotton area (cumulative A) reached 10% of total A, an arbitrarily selected

threshold chosen to balance soy/cotton area preservation with low soy/cotton area exclusion.

Excluded municipality counts ranged from 94 in CY2014 to 113 in CY2001. Pasture/cer-

rado fraction in the included municipalities was reduced to a 14-year total of 75%, with annual

values ranging 73–80%. Using definitions from [36] to characterize map accuracy, the 14-year

total proportion correct was estimated to be 91.2% (8.8% total disagreement = 7.7% quantity
error + 1.1% allocation error) for a {pasture/cerrado, soy/cotton} two-class split. Proportion

correct is equivalent to overall accuracy; quantity error reflects absolute over/under-mapping

in excess of errors that hypothetically could be remedied through class swapping (allocation

error).

In this two-class examination, it is readily determined from the proportion-adjusted confu-

sion matrix that the 7.7% quantity error is meant to reflect an under-mapping of soy/cotton.

With soy/cotton comprising 25% of the 14-year total examined area, this under-mapping

would seem to suggest that our maps fail to represent 24% of MT soy/cotton (7.7/(25+7.7)), a

substantial error indeed. However, statewide comparison between IBGE estimated soy/cotton

area and mapped soy/cotton area provides evidence to the contrary, with 14-year total mapped

soy/cotton area equal to 93% of the 14-year total IBGE soy/cotton area, implying a much more

modest under-mapping error of just 7%. Thus we posit that the inferred statewide estimate of

Table 4. RF model OOB accuracy. The confusion matrix and traditional classification accuracy statistics are given for the OOB results produced using the

RF model.

Reference Class

Past/Cerr Soy-Sing Cotton Soy-Doub Soy-Cot Total

Predicted Pasture/Cerrado 507 42 6 13 2 570

Soy-Single 41 591 6 154 7 799

Cotton 1 3 39 1 12 56

Soy-Double 5 154 21 869 63 1112

Soy-Cotton 0 1 7 14 122 144

Total 554 791 79 1051 206 2681

User’s Accuracy 89% 74% 70% 78% 85%

Producer’s Accuracy 92% 75% 49% 83% 59%

Overall Accuracy 79% Kappa 0.71

https://doi.org/10.1371/journal.pone.0176168.t004
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24% under-mapped soy/cotton is greatly overstated, a consequence of ground reference sam-

ple characteristics and assumptions underlying the quantity error statistic. Had we considered

the entire state (i.e. no municipality screening), the theoretical under-mapping error for soy/

cotton is overstated more severely at 49%, illustrating the importance of exercising caution

when making map accuracy considerations using probabilistic extrapolation. While estimating

map accuracy in this manner generally is good practice, other more direct measures (compari-

son to widely accepted IBGE statistics in this case) can provide more reliable assessments

when suitable ancillary data are available.

Independent roadside data assessment. While the previous section addressed the sample

vs. map proportion issue with regard to estimating map accuracy, this section addresses the

sample representativeness issue. The question is whether or not the ground reference data

sample is spatiotemporally representative of statewide crop conditions and management that

are reflected in MODIS NDVI profiles. During three different field campaigns, team members

collected roadside data samples from the four main soy/cotton growing areas around the state

[12], and here we assess RF model performance against these samples. Data from two of the

campaigns (CY2015 and CY2016) were from years not represented in the ground reference

dataset used for model construction and are thus temporally out-of-sample. The three roadside

datasets should collectively represent the overall statewide spatial variability in class-specific

NDVI profile distributions more completely than the ground reference dataset, which spatially

was more confined (Fig 1).

More than 3000 roadside samples were collected. Land cover classifications from the RF

model applied to the respective crop year were determined for each point and compared to the

roadside class, resulting in a Kappa statistic of 0.78 and an overall accuracy of 85% (Table 5).

The low producer’s accuracy for the cotton class could be attributable to its disproportionately

small sample size relative to the ground reference data, and with most of the error accounted

for by misspecification as soy-cotton, possibly also to model confusion caused by the fre-

quently strong early-season signal seen in the MODIS profile distribution for cotton (Fig 2).

104 sugarcane points that were collected with the CY2013 dataset yielded user’s and producer’s

accuracy values of 97% and 85%, respectively, which supports our reliance on the Canasat

data.

Looking at the roadside locations across time, we can check if overall accuracy values are

behaving as would be expected from one-year probability samples representative of the

dynamic MT agricultural landscape. Specifically, one would expect overall accuracy to peak

during the target year and generally decline backward and forward in time. Indeed, this is

Table 5. RF model accuracy assessment using the roadside data. The RF model was applied to the roadside data. Results are aggregated across all

three years of data: CY2013 (n = 715), CY2015 (n = 924), CY2016 (n = 1442).

Reference Class

Past/Cerr Soy-Sing Cotton Soy-Doub Soy-Cot Total

Predicted Pasture/Cerrado 653 64 6 28 2 753

Soy-Single 32 312 0 140 3 487

Cotton 1 0 11 2 2 16

Soy-Double 15 81 3 1313 53 1465

Soy-Cotton 1 0 26 7 326 360

Total 702 457 46 1490 386 3081

User’s Accuracy 87% 64% 69% 90% 91%

Producer’s Accuracy 93% 68% 24% 88% 84%

Overall Accuracy 85% Kappa 0.78

https://doi.org/10.1371/journal.pone.0176168.t005
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what we observe for all three years (Table 6), an outcome supporting the general spatiotempo-

ral validity of the RF model across the MT study area.

Comparison to IBGE crop area statistics. We compared IBGE crop areas for soybeans

and cotton to the LC map totals across the study period (Fig 4). With reasonably high correla-

tion coefficients and regression slope coefficients near one, much of the year-to-year variability

(including the general uptrend) in both IBGE series is reflected in the map results. Addition-

ally, with a relatively small intercept, the mapped soybean totals exhibit low bias. The same

cannot be said for cotton, however, as the maps fairly consistently underestimate cotton area

when compared to the IBGE statistics. While comparison of mapped crop area to statewide

IBGE crop area estimates is not a direct reflection of spatial accuracy, as described earlier it

does provide a simple and direct indicator of quantity error. One should expect a reasonable

level of agreement between these values for reliable map sets. That temporal trends and fluctu-

ations are found to coincide to a large degree provides further affirmation of the temporal gen-

erality of the RF model for the study area.

Assessing LC change during CY2001-2014

The spatial and temporal coverage of our map set makes it applicable for a variety of assess-

ments, which we illustrate with three analyses. The first assesses deforestation rates in relation

to SoyM and land use tendencies of deforested areas. The second examines the increase in

double cropping on soy cropland observed during the study period. The third analysis employs

the conceptual framework of horizontal vs. vertical intensification to explore the relationship

between agricultural intensification and deforestation.

Impacts of SoyM on deforestation rates and fates of deforested lands. Accumulated

deforested area (green line) is shown in Fig 5, which is the set of running sums of the last col-

umn of Table 3. The progression of total deforest values essentially reflects deforestation infor-

mation provided in the PRODES dataset that we prepared for MT.

Table 6. Overall accuracy of RF model class with the roadside data. Agreement should exhibit a clear

peak at the target year (highlighted cells) as well as decay moving away from the target year, which is

observed with all three roadside datasets.

Overall Accuracy

Crop Year 2013 2015 2016

2001 34% 45% 31%

2002 41% 47% 37%

2003 45% 50% 40%

2004 51% 51% 47%

2005 51% 51% 46%

2006 50% 53% 47%

2007 59% 58% 52%

2008 63% 58% 56%

2009 64% 60% 56%

2010 64% 64% 58%

2011 65% 63% 57%

2012 74% 68% 66%

2013 86% 73% 72%

2014 77% 75% 75%

2015 71% 84% 76%

2016 72% 76% 84%

https://doi.org/10.1371/journal.pone.0176168.t006
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With SoyM taking effect between CY2006 and CY2007, the reduction in annual deforesta-

tion rate immediately after implementation is starkly evident, more pronounced than reported

in either [16] or [23] (S1 Fig). The minimum pre-SoyM deforestation rate (561,185 ha/yr in

CY2002) is more than 60% greater than the maximum post-SoyM deforestation rate (344,748

ha/yr in CY2009). Overall, relatively stable deforestation rates are observed during both the

pre-SoyM and post-SoyM periods, with the post-SoyM trend line rate representing a reduction

of the pre-SoyM trend line rate by a factor of 5.7 (Fig 5).

One important question surrounding deforested areas pertains to their subsequent land use,

particularly for soy production. Using the LC map set, we calculated the post-deforestation land

use practices for 1 to 11-year time lags following the crop year of deforestation with respect to

use as pasture/cerrado, for soy production (including soy-single, soy-double, and soy-cotton),

and for cotton (cotton and soy-cotton) or sugarcane production (Table 7). With a 1-year lag,

the map results indicate that soy was planted on 2.8% of lands deforested during the previous

Fig 4. Map area totals compared to IBGE estimates. Total crop area from the LC maps is shown along with

corresponding IBGE crop area statistics for (a) soybeans and (b) cotton. Linear regression equations and

associated statistics are provided on the plots.

https://doi.org/10.1371/journal.pone.0176168.g004
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Fig 5. Map area totals for deforest and soy. Map-based areal data summaries for accumulated deforestation and annual soybeans

are shown. Pre-SoyM and post-SoyM deforest trend lines are also depicted, with respective regression slopes provided in red text

above the graph. A value of 0 was assigned to CY2000 to anchor the pre-SoyM total deforest trend line in the same manner that

CY2006 is used to anchor the post-SoyM total deforest trend line

https://doi.org/10.1371/journal.pone.0176168.g005

Table 7. Mean percent cover following deforestation. Conversion to soy increases with lag time, peaking at 9 years.

Cotton

Lag Crop Years Pasture/ Soy (2 classes)

(years) Analyzed Cerrado (3 classes) +

Sugarcane

1 02–14 97.1 2.8 0.08

2 03–14 94.9 5.0 0.03

3 04–14 93.2 6.8 0.03

4 05–14 91.1 8.8 0.05

5 06–14 89.9 10.0 0.08

6 07–14 88.1 11.8 0.08

7 08–14 85.9 14.1 0.13

8 09–14 84.2 15.7 0.15

9 10–14 82.2 17.8 0.19

10 11–14 82.7 17.2 0.35

11 12–14 83.6 16.2 0.36

https://doi.org/10.1371/journal.pone.0176168.t007
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crop year, whereas 97.1% ended up as pasture/cerrado. For greater lags, a steady increase in soy

prevalence is seen up to about 9 years, where use for soy production peaks at 17.8%. The soy

occurrence rate then decreases slightly for 10 and 11-year lags, with the drops partly offset by an

increase in cotton/sugarcane proportions. Generally as lag increases, the number of years avail-

able for averaging declines, decreasing the stability of the larger lag results.

In addition to SoyM implementation coinciding with an abrupt decline in deforestation

rate, we also found a decrease in forest-to-soy conversion when comparing pre-SoyM rates to

post-SoyM rates. We can restrict the post-deforest land cover analysis just described to 1 to

5-year time lags and evaluate the outcomes exclusively using the pre-SoyM time period

(CY2001-2006) and the post-SoyM time period (CY2007-2014). Results support the conclu-

sion that the forest-to-soy conversion rate has declined in MT following implementation of

SoyM (Table 8). Averaged across all five lag intervals, the post-SoyM forest-to-soy conversion

rate decreased by a factor of 2.4 (9.4% down to 3.9%) compared to the pre-SoyM rate, with a

decrease factor range of 1.9–3.2 across the different lags.

Production intensification on soy cropland. The general increase in total soy area during

the study period is accompanied by the increase in double cropping of soy with another com-

mercial crop, including cotton (Fig 5). While single crop soy plantings remained fairly con-

stant over the study period, soy cultivation in general increased from 3.3 Mha in CY2001 to 7.8

Mha in CY2014 (Table 3), which is an increase by a factor of 2.4. In terms of total area of com-

mercial crops coming off land used for soy production (i.e. double counting soy-double and

soy-cotton in area totals), the corresponding numbers are 3.7 Mha in CY2001 and 12.8 Mha in

CY2014, which is an increase by a factor of 3.5. Another way of looking at this is in terms of

average number of commercial crops per soy pixel, which increased from 1.1 in CY2001 to 1.6

in CY2014, indicating a shift of soy production from predominantly single-crop systems to

majority double-crop systems.

Horizontal intensification vs. vertical intensification

Though a large amount of forest land has been cleared during the study period and converted

to cropland (horizontal intensification), it is also true that a large amount of pre-existing

Table 8. Mean percent cover following deforestation, pre- vs. post-SoyM. Following implementation of SoyM, rate of conversion to soy was found to

decrease for each of five examined lag intervals.

Cotton

Lag Crop Years Pasture/ Soy (2 classes)

(years) Analyzed Cerrado (3 classes) +

Sugarcane

pre-SoyM 1 02–06 95.1 4.9 0.02

2 03–06 91.8 8.1 0.04

3 04–06 90.7 9.2 0.04

4 05–06 89.5 10.5 0.06

5 06 85.7 14.2 0.06

average 90.6 9.4 0.04

post-SoyM 1 08–14 98.3 1.5 0.13

2 09–14 97.1 2.9 0.03

3 10–14 95.8 4.1 0.02

4 11–14 94.4 5.6 0.03

5 12–14 94.4 5.6 0.04

average 96.0 3.9 0.05

https://doi.org/10.1371/journal.pone.0176168.t008
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cropland has seen an increase in productivity in the form of multi-cropping (vertical intensifi-

cation). We present a simple comparison to illustrate the different degrees to which soy-related

agricultural intensification is occurring with respect to the horizontal and the vertical.

Considering that forest-to-soy conversion rate appeared to hit a maximum with a lag of

nine years (Table 7), we define a horizontal intensification area to be the accumulated area

deforested during CY2001-2005 and then calculate the fraction of this area that was classified

as soy in CY2014. All of this deforested land (which is not restricted by SoyM) will have had at

least nine years to be converted to soy (soy-single, soy-double, or soy-cotton). To define a

comparable vertical intensification area, we consider all single crop soy plantings (soy-single)

in CY2005 and compute the fraction of this area that has been converted to double crop soy

plantings (soy-double or soy-cotton) in CY2014. With these definitions, the horizontal area

comprises 5.4 Mha and the vertical area a comparable 4.1 Mha.

In CY2014, we find that 1.2 Mha of the horizontal area had been converted to soy, for a

conversion fraction of 22%. In CY2014, we find that 2.5 Mha of the vertical area had been con-

verted to soy-double or soy-cotton, for a conversion fraction of 61%. Based on this assessment,

soy producers intensified production on existing soy cropland at 2.8 times the relative rate at

which they expanded soy production to deforested areas. This direction of the intensification

dynamic in MT is consistent with the ideals expressed by Norman Borlaug that increased pro-

duction on existing cropland can relieve pressure to convert tropical forests for agriculture

[37]. However, this simplistic assessment ignores location-specific factors such as agricultural

production potential and market accessibility that could well affect the interpretation of this

outcome [7,9].

Conclusion

In this study we developed a 14-year land cover time series for the state of Mato Grosso, Brazil.

MODIS NDVI and a spatiotemporally extensive ground reference dataset were utilized to

develop a random forest classification model that was used to map the entire state for the

2001–2014 crop years. Annual INPE PRODES forest and Canasat sugarcane coverages were

processed and incorporated into the maps, along with static urban and water information.

We found a more abrupt reduction of the deforestation rate in MT immediately following

implementation of SoyM than has been reported in previous studies, consistent with claims

that SoyM has played a role in reducing pressure to deforest [23,24,38]. In MT we observed a

5.7-fold decrease in annual deforestation rate post-SoyM (CY2007-2014) compared to pre-

SoyM (CY2001-2006). We also observed a marked decline in forest-to-soy conversion rate

post-SoyM compared to pre-SoyM, another expected outcome of SoyM. Looking at 1 to 5-year

lags following deforestation, deforested areas ended up as soy at a rate 2.4 times greater pre-

SoyM than post-SoyM. These findings suggest that the policy is helping eliminate the incentive

to eventually use newly deforested lands for soybean production. However, the situation

remains complex; in the property-level analysis of [24], the authors show that hundreds of

“soy properties” in MT experienced post-SoyM deforestation in violation of Brazil’s Federal

Forest Code, though they remained in compliance with SoyM because they did not plant soy

in the deforested areas.

By analyzing total production increases attributable to vertical and horizontal intensifica-

tion, we can account for the fact that mechanized agriculture may expand its area and yields
both on recently deforested land and on other non-forest areas, especially existing cropland

[39]. Focusing on soy, we found a pronounced increase in vertical cropping intensification

over the study period. While our maps indicate that total soybean plantings have increased by

a factor of 2.4 between CY2001 and CY2014, the total number of commercial crops harvested
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from soybean fields has increased by a factor of 3.5 due to increased use of double cropping. In

terms of total number of commercial crops per soy pixel, we find this number has increased

from 1.1 in CY2001 (indicating single crop soybeans to be the largely dominant management

practice) to 1.6 in CY2014 (indicating that the majority of soybean crops are now being fol-

lowed by a second commercial crop in the same growing season).

We found that soy producers in MT are intensifying production on existing soy fields (ver-

tical) at 2.8 times the relative rate that they are expanding soy production to areas deforested

before SoyM (horizontal). Understanding how this rate varies across space, with municipali-

ties, watersheds, vegetation zones, etc. as the units of analysis, allows for exploring both the

human and environmental dynamics that bring about intensification. A number of location-

specific factors will also warrant consideration, such as production potential (agricultural apti-

tude) and market access, in addition to local and regional yield trends (e.g. MT soy, corn, and

cotton yields from IBGE have increased by 0.3% yr-1, 4.5% yr-1, and 0.4% yr-1, respectively,

where these values are the 14-year linear trend slopes divided by the 14-year average yields).

Our land cover map data are provided with this article (S3 Dataset). This is the first time

such a detailed and extensive land cover dataset is available to the public covering this region

of the world that has attracted so much attention concerning both the development of agricul-

ture there and the policies designed to save remaining tropical forests. Policy researchers, land

change scientists, non-governmental and governmental agencies, and the public can now take

advantage of this reliable land cover dataset for various applications without having to produce

the data themselves.

Supporting information

S1 Fig. Annual deforestation in the Amazon biome portion of Mato Grosso. Series from

three independent studies are shown, all derived from PRODES data. Results from this study

are most consistent with a large, direct SoyM effect on Amazon deforestation decline.

(TIF)

S2 Fig. PRODES anomaly cleanup. Examples of PRODES forest ‘NoData’ cleanup are shown

in the upper panels, whereas examples of PRODES ‘FORerr’ (bogus FOR pixels) cleanup are

shown in the lower panels. Example locations are shown in the Mato Grosso map in the center,

along with the Landsat tile overlap area and reduced area that was inspected during ‘FORerr’

cleanup.

(TIF)

S1 Supporting Information. Primary supporting information file. All supporting informa-

tion textual components referenced in the manuscript are provided in this document.

(PDF)

S1 Dataset. Ground reference data. Crop year, land cover class, data source, and MODIS

NDVI profiles are provided in an Excel spreadsheet for all 2681 samples comprising the

ground reference dataset.

(XLSX)

S2 Dataset. Roadside data. Crop year and land cover class are provided in a point shapefile

for all 3185 samples comprising the roadside dataset.

(ZIP)

S3 Dataset. Land cover map data. Final land cover maps for CY2001-2014 are provided for

the state of Mato Grosso, Brazil.

(ZIP)
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