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Abstract: Forests contain just under 58% of all known species globally, with approximately
61% of these found in countries with Forest Stewardship Council (FSC)-certified forests.
Few studies have directly analyzed the association between biodiversity and certification,
often focusing on limited geographical or temporal scopes. There is a lack of understanding
regarding the socio-political and ecological drivers of FSC certification’s relationship with
biodiversity conservation. We assess the associations between country-level characteristics
and the relationship between FSC’s forest management (FSC-FM) certification area and
independently made biodiversity estimates from the International Union for Conservation
of Nature (IUCN). Specifically, using generalized random forests (GRF) and data from
91 countries between 2008 and 2019, we examine the associated factors that govern FSC-FM
certifications relationship with percentage threatened species. The results indicate that
increasing FSC-FM-certified areas is linked to a reduction in the percentage of threatened
species by 0.1 to 0.15. Moreover, FSC-FM certifications show a positive relationship with
biodiversity in regions with high population densities and significant tree cover loss.
Enhanced perception of corruption control and reduced extraction of non-forestry resources
further strengthen this association. These findings provide the FSC with strategic insights
to expand FM certification, contributing to biodiversity conservation through sustainable
forest management.

Keywords: forest certification; Forest Stewardship Council; biodiversity; random forest;
conservation

1. Introduction

Voluntary forest certification is a non-state and market-driven governance mechanism
for conservation [1]. The Forest Stewardship Council (FSC)’s voluntary forest certification
began in 1993 as a moderate response to the frequently contentious direct-action strategies
of environmental NGOs, including disruptive environmental boycotts [2]. The FSC theory
of change involves enhancing conservation benefits by encouraging forest management
entities (FMEs) to adopt responsible forest management practices based on conformance
to FSC’s forest management (FM) standards, with assurance provided by third-party
independent certification body (CB) audits [3].

The costs involved in assurance are ideally balanced by market benefits gained from
selling high-demand certified products within this governance mechanism [4]. In spite of
this, the motivations of FMESs to have their operations certified are different in different
countries. They can include local market demands, environmental regulations, consumer
pressure, and the specific forest management practices prevalent in that region [5]. Differing
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national motivations, such as economic reliance on forestry, the state of sovereign rights
over forest management activities (including hunting and ranching), and varying levels of
commitment to recognizing indigenous rights have been identified as factors that shape
the extent to which FSC’s stringent environmental and social standards are supported,
implemented, or contested [6]. This means that the efficacy of this market-based instrument
depends on identifying and resolving institutional, social, and ecological externalities
that may cause market failures by distancing decision-making from actual on-the-ground
impacts [7].

Programme for the Endorsement of Forest Certification (PEFC) is another forest cer-
tification system, which, along with the FSC, offers opportunities and standards for the
voluntary certification of forests. It was started in 1999, driven by the forestry industry to
compete with FSC [6,8]. Being an umbrella certification (endorsing national level initia-
tives), it is larger than the FSC in terms of hectares of forest area certified [9]. The growth
of FSC and PEFC which is supported by NGOs and the industry, respectively, adds to
the complexity of motivations for forest certification when it comes to their impacts on
ecosystem services like biodiversity conservation.

Globally, the FSC had certified 204.4 million hectares in 94 countries in 2020 [10], but
this decreased to 160.4 million hectares in 89 countries in 2024 [11]. These areas are certified
under a nationally unique set of verifiers while adhering to globally common principles
and criteria. Figure 1 shows the distribution of the FSC-certified area as a percentage
of the total forest area just in the year 2020 [10]. After almost 30 years, it has created a
formal and informal dialogue surrounding sustainable forest management between various
stakeholder groups, including FMEs, to drive positive impacts on the ground [12], but
global relationships with biodiversity and other natural values remain to be assessed. This
is especially relevant, as 57.9% of the total known species were found in forests in 2020, out
of which 61.2% were found in countries that had FSC-certified forestlands, amounting to
35.5% of all species in the world (as reported by the International Union for Conservation
of Nature (IUCN) [13]). Business-as-usual approaches will be detrimental to conservation
efforts in light of projections showing a decrease in biodiversity [14].
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Figure 1. Global distribution of areas certified with Forest Stewardship Council’s (FSC) forest

management (FM) certification as a percentage of total forest area in a country in the year 2020 [10].
Countries with no color did not have any FSC-FM certification in 2020.

Direct analyses of possible associations between biodiversity and certified areas are
limited. When conducted, they focus on smaller geographical or temporal scales. Some note



Land 2025, 14, 130

30f16

that the FSC system is not an adequate motivation for the forest landowners to maintain or
enhance forest cover [15]. Blackman et al. also used the Differences-in-Differences robust
methodology to determine that the FSC’s forest management certification program has no
impact on deforestation [16]. On the other hand, other studies found positive associations.
Particularly, Miteva et al. found positive social and environmental impacts of the FSC
certification using spatially explicit village-level data from Kalimantan, Indonesia [17].
Specifically, they found that FSC’s FM certification reduced deforestation by five percent in
that region. Damette and Delacote found a negative impact of certification on deforestation
on a global level and that the extent of timber extraction increases deforestation [18]. They
argued that certification may mediate (or rather soften) this relationship when the quality
of governance, including corruption, is considered. An agreement exists that the forest
certification mechanism is strengthened by parallel forest governance from governments or
people [19]. The methodology of this study follows the importance of considering such
mediating/confounding factors. For example, Maryudi shows that tenure security is a
significant hurdle to forest certification, as conflicting governance frameworks “impinge
on areas currently managed by forest concessions” [20]. According to Romero et al., to
effectively assess the role of forest certification, it is crucial to have knowledge about the
political economy of the forest sector, land use change, and the temporal dynamics of
certification [21]. Other possible sources and mediating pathways of heterogeneity in the
role of forest certification, in general, and FSC, in particular, could be socio-ecological factors,
including tree cover loss [22], agricultural growth [23], and population density [24,25].
Similar factors affecting biodiversity could include politico-economic drivers such as the
gross domestic product (GDP) [23,26], corruption [27,28], and natural resource rents [29,30].

The FSC-FM certification incorporates principles of sustainable forest management that
inherently prioritize biodiversity through criteria such as maintaining high conservation
value forests, protecting rare and threatened species, and minimizing ecological damage [8].
However, as these above studies have noted, the FSC mechanisms operate within broader
socio-political and ecological frameworks that cover and affect anti-poaching initiatives,
habitat restoration, and protected area management. The influence of external factors such
as governance, enforcement, and regional conservation strategies likely plays a significant
role in the relationship between FSC-FM certifications and biodiversity conservation.

The contextual variables noted above increase the difficulty in analyzing the FSC
certification relationship with biodiversity as separate from that of activities towards com-
pliance with governmental regulations or corporate social responsibility (CSR) activities,
or other governance systems affecting biodiversity. Data availability, identifying corre-
sponding scales of analyses, and other study design difficulties are argued to be some of
the major factors that hinder undertaking impact assessments for forest certification [1].
Moreover, much of earlier research has been focused on processes instead of outcomes, and
the researchers have used data received after third-party certification audits [31].

Our study aims to understand the relationship between the presence of FSC certifi-
cation and biodiversity outcomes from a global perspective, given the heterogeneity in
country-level complex politico-ecological and economic systems. The specific objective
of this study is to assess the associations between country-level characteristics and the
relationship between the FSC-FM certification area and independently made biodiversity
outcome estimates from the IUCN. To achieve this, and considering the likely interdepen-
dence of variables, we compare the outputs of ordinary least square (OLS) models with
those of generalized random forest (GRF) models, which are arguably better at specifying
complex associations.
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2. Materials and Methods
2.1. Data Assembly

The observations on FSC certification and the percentage of threatened species from
TUCN were acquired from publicly available sources, i.e., FSC [10] and IUCN [13], respec-
tively. FSC data on the presence or absence of forest management certification and the
certified area were available from 1993 to 2021 for 94 countries. The IUCN’s data on threat-
ened species for the same countries were found to be complete only after 2008. Instead of
raw hectares, the FSC-FM-certified areas were used as a percentage of the total forest area
(source: Food and Agriculture Organization, FAO [32]) in a country in a given year. The
percentage of threatened species was calculated from the numbers of species assessments
(terrestrial forest-based: plants and animals), following IUCN [33], formulated as

Percent Threatened Species = ((Critically Endangered + Endangered +

1
Vulnerable)/(Total assessed — Extinct — Data Deficient)) x 100, @

TUCN has a “forest-based” option to select in the search filters under ‘habitats’ [13].
We do not use the ‘Red List Index’ in our analysis, as it is not separately available for
forest-based species in the IUCN summary tables. Tree cover loss was calculated as a
percentage of the total forest available in each country in a given year [34], while agri-
cultural land was used as a percentage of the total land (source: FAO [33]). The data
on economic and social dimensions relevant to this study were collected from the World
Bank. Specifically, observations on the perception of the Control of Corruption index from
the World Governance Indicators [35], the annual percent growth of GDP per capita [36],
population density (the number of people per square km) [37], and natural resource rents
(as a percentage of GDP) [38] were collected for each country for the required years. The
natural-resource rent data included revenues from oil, natural gas, coal, and forestry;
therefore, two different variables—non-forestry rent (containing oil, natural gas, and coal
rents) and forestry rent—were used in the models to compare patterns within the total
natural rents [39]. Observations for Taiwan, Eswatini, and Liechtenstein could not be
used for statistical modeling, as data on several covariates, including GDP, tree cover loss,
rents, and certification, were missing. Moreover, agricultural and rent observations for the
year 2020 were not published yet, so the analyses were kept restricted to 2008-2019 across
91 countries.

The dataset includes observations from 91 countries over 12 years (2008-2019), result-
ing in a total of 1092 data points. To ensure the sample size is statistically sufficient, we
conducted a post hoc statistical power analysis, considering the number of predictors in
the regression and random forest models. The analysis confirmed that the dataset provides
adequate statistical power (>0.80) to detect medium-to-large effect sizes at a significance
level of 0.1. Moreover, the geographic, ecological, and governance diversity in the dataset
aligns with established practices in cross-country analyses of biodiversity conservation and
forest governance. This combination of temporal depth, geographic breadth, and statistical
adequacy underpins the reliability and generalizability of our findings.

2.2. Statistical Methods—Ordinary Least Square (OLS)

We use the percentage of threatened species as the dependent variable and the per-
centage of FSC-certified area as the explanatory variable, while all other variables are
considered control variables. We first ran simple heteroskedasticity and cluster-corrected
OLS regressions, initially with only year as a fixed effect and then with both year and
country as fixed effects to verify whether the estimates of the chosen independent variables
show more cross-country or more within-country variation. Simple ordinary least square



Land 2025, 14, 130

50f 16

regression (OLS) models were built, once with both year and country-fixed effects and again
with only year effects, to assess the patterns in variable estimates and their significance.
This was performed to verify whether the estimates of the chosen independent variables
showed more cross-country or more within-country variation. Only heteroskedasticity
and autocorrelation corrected robust standard errors were used in all the regression and
other models. Under conditions of autocorrelation and heteroscedasticity, the usual OLS
estimators remain unbiased, linear, and asymptotically normally distributed but lose the
minimum variance property among all linear unbiased estimators [40]. Different combina-
tions of these variables were used in modeling using the step-wise regression methodology.
The full regression equation for the two-way fixed effects model was as follows:

Percent Threatened Species (;j) = dCountry ;) + dYear (; + Percent tree cover loss (;j + Percent agricultural

land (;; + GDP per capita percent growth (; ;) + Population density (; ;) + Corruption control perception 5 + (2)

Non-forestry rent ;) + Forestry rent (; j + Percent FSC-certified area (;; + dFSCcertification (

i)/
where i denotes the country, and j denotes the year.

2.3. Generalized Random Forest

The second part of the analysis involved training random forests, an ensemble learning
methodology in which random subsets of observations are used to test which independent
variables can partition the samples most effectively [41] using both full and country-level
modeling, as suggested by Athey and Wager [42].

Amit and German introduced the core idea of the ‘random forest’, an ensemble
learning methodology, in which a random subset of observational data is used to test
which independent variables can partition the samples in the most effective way, creating a
decision-tree of effects [41]. According to Breiman, estimates of effects are determined by
averaging all the estimates in individual trees [43]. The ‘causal forest’ methodology of the
generalized random forest (GRF) builds individual trees using greedy recursive partitioning
and is randomized using bootstrap (or subsample) aggregation such as classical random
forests. However, it is different in that, instead of the kernel weighting function, an
adaptive weighting function is used to identify partitions and capture heterogeneity in the
estimated average treatment effects using covariate-based conditional average treatment
effects (CATEs) [44]. In the context of covariates, CATEs in GRF are informative, as they
help uncover the varying treatment effects within different subgroups of the population
defined by specific covariate values, enabling a comprehensive understanding of how the
treatment variable (in our case: presence/absence of FSC-FM) interacts with covariates
(control variables noted above) to influence the outcome variable (percent threatened
species here).

The causal forest approach in GRF offers several advantages over OLS regression
when estimating effects. Unlike OLS, which assumes linearity and strict parametric rela-
tionships between variables, the causal forest approach can capture non-linear and complex
relationships without making strong assumptions about the underlying data distribution.
Unlike OLS, the causal forest explicitly considers a treatment assignment as a split criterion,
enabling the estimation of effects while accounting for confounders', which is very im-
portant in the case of potentially complex relationships involved in the scale and scope of
this study. This is achieved by GRF’s ability to provide feature importance measures. This
becomes particularly important when there are multiple confounders present, as GRF’s
feature importance can help disentangle the effects of various predictors, including the
confounders, and provide a comprehensive understanding of their relative importance in
predicting the outcome, thereby addressing potential confounding and gaining deeper in-
sights into the data. By leveraging the power of random forests, the causal forest approach
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provides a flexible and robust framework for causal inference that surpasses the limitations
of OLS in capturing complex and interdependent relationships in observational data.

We used the stepwise regression models from Equation (2) to train our data, using
the grf package in R (version 2024.12.0+467) (a detailed algorithm is provided by Athey
and Wager [42]). We trained a ‘pilot’ raw random forest with all covariates first, and a
second causal forest on only those covariates, which showed a higher number of splits in
the pilot forest trees. As suggested by Athey et al. [44], we trained both forests to reduce
the out-of-bag error (of subsamples not used to train main forests) using (i) 2000, 4000, 6000,
8000, 10,000, and 12,000 trees, (ii) using the ‘mtry’ parameter (how many covariates are
used to construct splits) as min(sqrt(p) + 20, p), where p is the number of variables, and
(iii) honesty fractions (fraction of samples used in selecting tree split) from 0.5 to 0.8. We
recorded the importance of each covariate in the first raw forest, as denoted by the percent
share of the number of splits, and then trained a second forest on only those features that
saw a reasonable number of splits in the first step. Plotting the distributions of CATEs
to explore directions of heterogeneity in the FSC-FM association with biodiversity, we
also tested whether the difference between high and low estimates, conditioned on each
covariate, was statistically significant. Finally, we trained a third forest using country-level
data averaged out over all the years under analysis to assess whether an analysis focusing
on country-level associations can capture heterogeneity signals better than the full forest.
We tested heterogeneity in the data captured by the three forests using the ‘best linear
predictor’ methodology developed by Chernozhukov et al. [45], which fits CATE as a
linear association of the out-of-bag causal forest estimates [42]. It provides information on
whether the predictions are correct (if the coefficient of ‘mean.forest.prediction’ is 1 and
significant), and whether the forest could capture the underlying heterogeneity signals in
the data (if the coefficient of ‘differential.forest.predictions’ is 1 and statistically significant).

To empirically demonstrate that GRF performs better than OLS, we compared the
results using mean squared error (MSE) and R?. MSE quantifies the average squared
difference between predicted values and actual values. Lower MSE values indicate better
model performance. By comparing the MSE of the GRF and OLS models, we assess
which model provides more accurate predictions. R?, also known as the coefficient of
determination, measures the proportion of variance in the dependent variable that is
explained by the independent variables. Higher R? values indicate a better fit of the model
to the data. We calculated R? for both GRF and different combinations of the OLS models
and compared their values to determine which model better captures the relationships in
the data.

3. Results
3.1. Data Distributions

Table 1 gives the distribution of each variable considered in the analysis, including
their measurement units, mean values, and standard deviation (SD). A complete list of the
91 countries under analysis is given in Appendix A.

To explore regional distributions, we calculated the average percentages of threatened
species and FSC-certified areas (as % of forest area) for all the regions that the 91 countries
fall in. Figure 2 illustrates the variations in the average percentages of threatened species
and FSC-certified areas from 2008 to 2019 for the selected regions using a stacked bar chart.
Figure 2 clearly shows the divergences between the two variables. Europe has a high
FSC-certified area, but the percentage of threatened species is higher in the tropical regions.
The likely reason why the percentage of threatened species is low could be because the
presence of FSC is greater in the developed world, where the percentage of threatened
species is relatively low.
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Table 1. The distribution of each variable considered in the analysis of associations between globally
threatened species and the Forest Stewardship Council’s (FSC) forest management certifications.
GDP = gross domestic product.

Name of Variable Mean Value Standard Deviation

Percent threatened species (%) 16.54 14.56
FSC-certified area (% of forest area) 11.59 20.06
GDP per capita growth (%) 1.99 3.51
Non-forestry rents (% of GDP) 2.78 5.49
Forestry Rents (% of GDP) 1.42 2.78
Control of Corruption (Index) 0.15 1.04

Population Density 106.09 115.76

Percent Agricultural Land (% of total land) 39.29 19.19
Tree Cover Loss (% of forest area) 0.71 0.87

Africa

Asia

Central America

Europe

Regions

North America

Qccania

South America

0% 5% 10% 15% 20% 25% 30% 35%
Percentages
. Average Percentage of Threalened Species
. Average FSC Area (Percentage of Forest Area)

Figure 2. Average percentage of threatened species and Forest Stewardship Council (FSC) forest
management (FM) certified area (as % of forest area) from 2008 to 2019 across different global regions,
covering 91 countries with existing FSC FM certifications.

3.2. OLS Regression of FSC-FM Certification Presence on Biodiversity

According to regression modeling, in the best model based on MSE and R?, many
covariates became statistically significant when country-level fixed effects were not in-
cluded in the model (Table 2). When year-fixed effects were included, increasing GDP
per capita, population density, and percent tree cover loss were positively associated with
the percent of threatened species. Moreover, the percentage of FSC-certified areas and
the perception of control of corruption were negatively associated. However, the same
covariates were not significant after including country-level fixed effects. The interaction
between resource rents and control of corruption was only significant for non-forestry rents
and had a positive estimate. The two-way fixed effects model estimates in Table 2 indicate
the importance of non-forestry rent, which was statistically significant in the two-way fixed
effects model despite the inclusion of country fixed effects; it was positively associated with
the percent threatened species.
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Table 2. Findings of ordinary least square regression model. Dependent variable: percentage of
threatened species. Estimates and heteroskedasticity and cluster-corrected robust standard errors (in

the brackets) are noted for each independent variable.

Independent Variables Two-Way Fixed Effects Only Year Fixed Effects
FSC certification presence (0,1) —1.68 (2.12) —0.52 (1.58)
FSC-certified area (% of Forest) 0.05 (0.03) —0.11 (0.02) ****
GDP per capita percent growth 0.13 (0.09) 0.27 (0.11) **
Non-forestry rents (% of GDP) 0.36 (0.12) ** 0.12 (0.03) **
Forestry rents (% of GDP) —0.07 (0.01) —0.16 (0.12)
Control of corruption —0.21 (3.21) —0.49 (0.23) ****
Interaction of Corruption Control and Non-forestry Rents 0.36 (0.15) 0.38 (0.11) ***
Interaction of Corruption Control and Forestry Rents —0.01 (0.34) 0.03 (0.21)
Population Density 0.02 (0.05) 0.007 (0.004) *
Percent Agricultural Land 0.10 (0.25) —0.001 (0.02)
Tree Cover Loss (% of Forest Area) 0.75 (0.73) 2.13 (0.78) ***
R-squared 0.3542 0.1927
Mean squared error 76.29 89.15
Number of observations 1087 1087

p values = *: 0.1, **: 0.05, ***: 0.01, ****: 0.001.

3.3. Generalized Random Forest: Variable Importance, Calibration, and Best Model Results

Both in the full forest with selected variables and the country-level forests, non-forestry
rent was the most split variable, indicating its importance in the recursive partitioning
algorithm. It amounted to around 53% of the total splits in the country-level forest. The
percentage of tree cover was consistently the second most important variable in this
model (29.4%), and the percentage of FSC-certified area was also important (9.6%). Other
important variables in the country-level forest were the interaction between resource rent
and control of corruption (8.1%) and population density (7.4%).

Table 3 contains the results of the ‘best linear predictor’ methodology of Chernozhukov
et al. [46] to assess whether the trained forest was well-calibrated. The predictor indicates
that the conditional average treatment effects, i.e., CATEs could be fitted as a linear as-
sociation of the out-of-bag causal forest estimates using our model (the coefficient of
mean.forest.prediction was 1 and statistically significant) and that the country-level for-
est could identify heterogeneous linkage signals in the data (the coefficient of differen-
tial.forest.predictions was also very close to 1 and significant for both country-level forests)
(Table 3).

Table 3. Forest calibrations for best model combinations of Equation (2)2.

Selected Variables’ Forest Country-Level Forest

Mean.forest.prediction 0.65 (1.21) 1.004 (0.08) ****
Differential.forest.prediction —5.4 (1.96) 1.13 (0.12) ****
p values = ****: 0.001.

Figure 3 shows the distribution of high to low CATEs, along independently taken
covariates that were statistically significant (p < 0.05). Association of FSC certification pres-
ence with biodiversity conservation may be higher (meaning less percentage of threatened
species) in countries with a higher loss of tree cover, higher population density, lower
extraction of non-forestry resources, higher perception of control of corruption, and higher
percent FSC-certified area. The association between FSC certification presence and bio-
diversity, along with the interaction term of natural resource rent and corruption control
may exhibit a U shaped relationship; FSC presence may be negatively associated with
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biodiversity in countries with ill-governed high extraction and slightly less negatively for
those with extremely well-governed high extraction countries with an inflection at zero.

Estimated CATE

Estimated CATE
Estimated CATE

Estimated CATE
Estimated CATE

Estimated CATE

I

L1/
a
—=
{ F 1

Nem-forestry Rent (% of GDP) Controd of Corruption (WGI) Interaction: Corruption Control * Non-forestry Rent
(d) i) {f

Figure 3. Statistically significant distributions of conditional average treatment effects (CATEs)
of Forest Stewardship Council’s forest management (FSC-FM) presence on percentage threatened
species, along with six covariates (a—f), based on the best country-level generalized random forest

(GRF) model for data across 91 countries between 2008 and 2019. GDP: gross domestic product; WGI:
Worldwide Governance Indicator.

Table 4 contains the results of country-level forests showing the estimates and robust
standard errors for modification in the association between FSC certification presence and
biodiversity. Figure 3 shows the distribution of CATEs when covariates are considered
independently, while Table 4 shows a modification in the association when other covariates
are controlled for. The association between FSC certification and biodiversity is positive
in contexts with higher percentage of FSC area and higher tree cover loss but negative
when natural resource rent and its interaction with a perception of corruption control

increases. The mean squared error of the GRF models was lower, and R? was higher than
both OLS models.

Table 4. Results of modifications in the association between FSC certification and biodiversity (2008
to 2019) as identified by the country-level forest. Dependent variable: Percent threatened species.
Treatment variable: FSC certification (presence/ absence)’.

Independent Variables Effect Modification
FSC-certified area (% of forest area) —0.15 (0.04) ****
GDP per capita percent growth 0.82 (0.21)
Non-forestry rents (% of GDP) 0.96 (0.29) ****
Forestry rents (% of GDP) —0.03 (0.36)
Control of corruption —0.51 (1.02)
Interaction between Corruption Control and Non-forestry Rents 0.64 (0.42) **
Interaction between Corruption Control and Forestry Rents —0.25(0.36)
Population density —0.007 (0.006)
Percentage of agricultural land 0.03 (0.04)

Tree cover loss (% of forest area) —4.82 (1.56) ***
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Table 4. Cont.

Independent Variables Effect Modification
R-squared 0.5768
Mean squared error 36.75
Number of observations 91

p values = **: 0.05, ***: 0.01, ****: 0.001.

4. Discussion

Using a novel machine-learning algorithm based om generalized random forests, this
study analyzed the linkages between FSC-FM certifications and biodiversity loss from
a global perspective and successfully identified country-level factors that moderate the
estimated association. By comparing the results from the OLS regressions with fixed
effects and the findings from the random forest analyses, we can identify and validate
the linkages and associations between the variables. The OLS regressions establish the
statistical significance and directionality of the relationships. At the same time, the random
forest analyses provide insights into the relative importance and conditional effects of the
variables in the relationship between FSC-FM and biodiversity.

Our findings contribute to the existing literature by demonstrating the nuanced bio-
diversity relationship with FSC certifications across diverse governance contexts. While
prior studies have emphasized the variability in certification implementation based on
different country-level factors [21], our analysis using GRF provides novel insights into
how country-specific factors are associated with these outcomes.

4.1. OLS Regression Results

Year-fixed effects control factors that affect biodiversity consistently across all countries
in a given year. They control for time-specific factors that may influence the outcome
variable but are constant within each country. In the OLS model with year-fixed effects,
we find that a decrease in the GDP per capita, population density, and the percentage
of tree cover loss, along with an increase in the percentage of certified area, and the
perception of control of corruption may be associated with higher biodiversity. Lower
GDP per capita suggests that economic development that focuses on sustainable practices
and reduces ecological footprints can contribute to higher biodiversity. This highlights
the need to balance economic growth with conservation efforts to minimize the negative
relationships between ecosystems and species. Lower population density indicates that
areas with lower human population pressure are associated with higher biodiversity,
underscoring the importance of managing human activities and preserving natural habitats.
A reduction in the percentage of tree cover loss signifies the preservation and restoration
of forests, which are critical for supporting diverse ecosystems and species. Promoting
sustainable forest management practices and mitigating deforestation are imperative for
maintaining biodiversity. Additionally, a higher percentage of FSC-FM-certified areas
indicates that responsible and sustainable forest management practices support biodiversity.
This emphasizes the value of certification schemes in promoting conservation measures and
ensuring the long-term health of forest ecosystems. Furthermore, the positive association
between the perception of control of corruption and biodiversity highlights the importance
of good governance and anti-corruption measures in protecting ecosystems. Effective
governance can deter illegal activities that harm biodiversity and support sustainable
resource management.

As this is a global study, it is important to consider these associations, as they can
provide insights into the within-country dynamics of biodiversity conservation. There
is likely a wide range of differences between countries in our study, which results in the
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non-significance of these variables when country effects are included to assess cross-country
dynamics. Future studies can categorize the countries into different groups and test the
importance of country-level factors, such as geographical characteristics, governance, or
cultural and political norms, using a two-way fixed effects model.

It is relevant to note that the non-forestry rent globally was the only statistically sig-
nificant variable in the two-way fixed effects model. It was also the most crucial variable
at the national level, both in its direct association with biodiversity and as a moderating
factor in the association between forest certification and biodiversity loss. Moreover, this
association does not seem to exist for just forest rents, as none of the estimates were found
to be significant. This indicates that forest extractions per se might not be important to
the association of FSC-FM with biodiversity, but other natural resources may play a sig-
nificant role. Total and forestry natural resource rents have been known to have different
moderating influences due to their respective contexts and roles in globalization [1]. This
means that the international supply chains and trade networks for natural resource rent
for oil and gas are higher in volume compared to forest products, indicating possible
stronger linkages with biodiversity. This might be one of the reasons why, in our models,
forest rent was not significant, but natural resource rent was. Future research must include
relevant variables from dimensions of globalization and international trade—such as trade
flows, cross-country regulations, foreign direct investments, etc.—to make the modeling
more robust, as biodiversity outcomes are known to be exported from high-income to low-
income countries [46]. Furthermore, including the forest-related dimension of economic
inequality—including income disparities, poverty levels, land ownership and control, the
human development index, etc.—along with corruption is also important, as they are
known to increase threatened species [47], likely through an increase in rent-seeking activi-
ties. The linkage found in our study aligns with the findings of Okada and Samreth [30],
who found that forest rents are not broadly associated with corruption, unlike total natural
resource rents, which include oil, natural gas, coal, and forestry.

4.2. Implications of Generalized Random Forest Modeling

In our study, the application of GRF analysis allowed us to explore the confounding
nature of variables and uncover crucial insights regarding the relationship between the
presence of FSC-FM certification and biodiversity conservation. GRF analysis offers several
advantages over traditional OLS regression, as it enables the identification of non-linear
relationships, interactions, and heterogeneity in the data, providing a more comprehensive
understanding of the underlying dynamics. By leveraging GRF, we can disentangle the
intricate relationships among variables and gain valuable insights that may have been
obscured by confounding effects. Our analysis focused on the treatment variable of FSC-
FM presence/absence and considered both the full forest with selected variables and the
country-level forests. This allowed us to account for potential confounding factors and
capture the complexity of the relationships involved. By examining the variable importance
measures obtained from GRF, we identified key factors that play a significant role in the
association between FSC certification and biodiversity outcomes.

Among the significant variables identified, non-forestry rent emerged as the most
influential, indicating its importance in the recursive partitioning algorithm. It accounted
for approximately 53% of the total splits in the country-level forest, underscoring its
confounding nature and potential to distort the relationship between FSC certification and
biodiversity conservation. Additionally, the percentage of tree cover consistently ranked
as the second most important variable (29.4%), highlighting its confounding effect on
the association of interest. The percentage of FSC-FM-certified area also emerged as an
important factor (9.6%), indicating its potential to confound the relationship between FSC
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certification and biodiversity outcomes. Furthermore, the interaction of resource rent with
control of corruption (8.1%) and population density (7.4%) contributed to the confounding
nature of the variables under investigation.

By explicitly considering the confounding effects of these variables, we gain a clearer
understanding of the association between FSC-FM presence and biodiversity conservation.
Figure 3 displays the distribution of conditional average treatment effects (CATEs), along
independently taken covariates that were statistically significant (p < 0.05). This analysis
reveals that confounding variables can potentially influence the direction and magnitude
of the relationship between FSC certification and biodiversity outcomes. It suggests that
the actual association of FSC certification with biodiversity may be masked or distorted
without adequately accounting for these confounding factors. Table 4 complements the
analysis by presenting the estimates and robust standard errors for modifications in the
association between FSC certification presence and biodiversity. The results demonstrate
that the association of FSC certification with biodiversity is positive in the context of
a higher percentage of FSC-FM-certified areas and higher tree cover loss. However, the
association becomes negative when non-forestry rent and its interaction with the perception
of corruption control increase, indicating the potential negative impact of poorly managed
resource extraction and corruption on biodiversity outcomes.

These results support the arguments that (a) FSC-FM certification likely has a posi-
tive association with biodiversity where it is most needed, possibly in developing coun-
tries, where population densities and tree cover loss are high (see Winkler et al. [48] and
Bjelle et al. [46]), and (b) enabling conditions, such as a higher perception of corruption con-
trol and lower extraction of non-forestry resources, are needed for that positive association
with FSC-FM.

The calibration results presented in Table 3 indicate that the country-level forests could
sufficiently capture the heterogeneity in the association of FSC certification with the percent
threatened species, but the full forest could not. As the fully trained model is not as well
calibrated as the country-level forest, it suggests that the model’s performance may vary
across different subgroups or levels of the data. This could indicate that the model is better
calibrated or more accurate at a broader global level (consistent across all countries) but
may exhibit inconsistencies or poorer performance when applied to more granular levels
of the data (viz., between-country associations).

4.3. Limitations

This study has important limitations that should be considered when interpreting the
findings. Firstly, FSC certifies only a small portion of global forests, which is primarily
motivated by a price premium for timber characterized by SFM. Though this process could
benefit biodiversity conservation, biodiversity conservation is mainly implemented and
supported by anti-poaching, habitat management, designation of protected areas, and
species rescue, which are part of the FSC-FM standard implementation. Nevertheless,
the association discussed in this study might be determined by other factors, which need
further study.

Secondly, the analysis is constrained by this study’s timeframe, which only covers
observations between 2008 and 2019. This limited period may not fully capture long-term
trends and dynamics in the relationship between FSC-FM certification and biodiversity
conservation. Additionally, this study does not consider the potential influence of the
global slowdown in land-use changes following the economic crisis of 2007-2009 [48].
Incorporating this temporal context would provide a more comprehensive understanding
of the association between certification and biodiversity outcomes.
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Moreover, while this study offers valuable insights at the global level, it may mask
regional variations and disparities between areas where certification is needed, and where it
has been implemented. The analysis acknowledges the lack of significant progress towards
FSC-FM certification in tropical regions (Figures 1 and 2), which are particularly important
for biodiversity conservation. Therefore, the generalizability of the findings to these high-
diversity regions may be limited. Furthermore, this study’s use of identified species under
threat and their changes as proxies for biodiversity outcomes may introduce biases. The
process of identifying threatened species may vary across different regions, potentially
leading to inconsistencies and inaccuracies in the measurement of biodiversity. This could
impact the reliability and applicability of the biodiversity measures used in the analysis.

In terms of methodologies, it is important to acknowledge the limitations of both
OLS regression and GRE. OLS regression assumes linearity and independence of variables,
which may not fully capture the complex, non-normal, and non-linear relationships in-
herent in ecological systems. On the other hand, even though the mean squared error of
GRF was lower and R? higher, and offers flexibility and the ability to capture non-linear
associations, it is subject to potential biases and uncertainties related to the algorithm and
assumptions made during model training. These can be potential sampling bias, failing
to generalize well to unseen data through overfitting, and violating the assumption that
treatment assignment is random or quasi-random. These limitations emphasize the need
for caution when interpreting the results. Our results do not indicate causality but potential
associations, and we suggest that alternative modeling approaches or complementary ana-
lytical methods could provide additional insights into the nuanced relationship between
FSC-FM certification and biodiversity conservation.

5. Conclusions

This study highlights the critical association between FSC-FM certification and biodi-
versity conservation, providing empirical evidence of its impact across diverse geographic
regions and governance contexts. By employing the GRF methodology, which is able to
navigate complex and interdependent variables, our analysis reveals that while FSC-FM
certification has a measurable positive effect on biodiversity, as indicated by lower percent-
ages of threatened species, this association is nuanced and varies significantly by region
and different factors. It is clearly necessary to incorporate socioeconomic and ecological
knowledge for efficiently developing strategies for biodiversity management in the context
of FSC certifications [49].

Key findings include the association between tree cover loss, non-forestry resource
rents, and governance indicators, such as population densities and corruption control on
the effectiveness of FSC-FM certification in promoting biodiversity. Our study highlights
the indirect association of FSC-FM certification with biodiversity conservation through
its alignment with the principles of sustainable forest management, despite the relatively
small proportion of forests currently certified globally. These findings contribute to the
growing literature on sustainable forest management and provide actionable insights for
policymakers, certification bodies, and conservation organizations.

Despite this study’s limitations, our results still provide valuable insights a) for FSC to
strategically plan expansion into regions with better-enabling conditions for sustainable
and responsible forest management and b) for governments to consider relevant policies
that affect enabling factors for FSC FM certifications to be successful at promoting biodi-
versity conservation, striking a balance between economic growth and the preservation
of ecosystems.
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Appendix A

Table Al. List of countries used in the analysis in this study.

Names of Countries Included in the Analysis

Argentina The Republic of Congo  Guatemala Madagascar Poland Thailand

Australia Costa Rica Guyana Malaysia Portugal Turkey

Austria Croatia Honduras Mexico Romania Uganda

Belarus Czech Republic Hungary Morocco Russia Ukraine

Belgium Denmark India Mozambique Rwanda United Kingdom

Belize Dominican Republic Indonesia Namibia Serbia United States

Bolivia Ecuador Ireland Nepal Sierra Leone Uruguay

Bosnia And Estonia Italy Netherlands Slovakia Venezuela

Herzegovina Fiji Japan New Zealand Slovenia Vietnam

Brazil Finland Kenya Nicaragua Solomon Islands Zambia

Bulgaria France Republic Of Korea  Norway South Africa Zimbabwe

Cambodia Gabon Kyrgyzstan Panama Spain

Cameroon Germany Laos Papua New Sri Lanka

Canada Ghana Latvia Guinea Suriname

Chile Greece Lithuania Paraguay Sweden

China Luxembourg Peru Switzerland

Colombia Philippines United Republic of Tanzania
Notes

1

Confounders refer to variables that are associated with both the treatment variable and the outcome variable, posing a risk of bias
by potentially influencing the relationship between the treatment and the outcome.

Estimates, along with heteroskedasticity and cluster-corrected robust standard errors (in the brackets) are noted for each
model prediction.

Estimates and heteroskedasticity and cluster-corrected robust standard errors (in the brackets) are noted for each indepen-
dent variable.
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