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Abstract: Forests contain just under 58% of all known species globally, with approximately

61% of these found in countries with Forest Stewardship Council (FSC)-certified forests.

Few studies have directly analyzed the association between biodiversity and certification,

often focusing on limited geographical or temporal scopes. There is a lack of understanding

regarding the socio-political and ecological drivers of FSC certification’s relationship with

biodiversity conservation. We assess the associations between country-level characteristics

and the relationship between FSC’s forest management (FSC-FM) certification area and

independently made biodiversity estimates from the International Union for Conservation

of Nature (IUCN). Specifically, using generalized random forests (GRF) and data from

91 countries between 2008 and 2019, we examine the associated factors that govern FSC-FM

certifications relationship with percentage threatened species. The results indicate that

increasing FSC-FM-certified areas is linked to a reduction in the percentage of threatened

species by 0.1 to 0.15. Moreover, FSC-FM certifications show a positive relationship with

biodiversity in regions with high population densities and significant tree cover loss.

Enhanced perception of corruption control and reduced extraction of non-forestry resources

further strengthen this association. These findings provide the FSC with strategic insights

to expand FM certification, contributing to biodiversity conservation through sustainable

forest management.

Keywords: forest certification; Forest Stewardship Council; biodiversity; random forest;

conservation

1. Introduction

Voluntary forest certification is a non-state and market-driven governance mechanism

for conservation [1]. The Forest Stewardship Council (FSC)’s voluntary forest certification

began in 1993 as a moderate response to the frequently contentious direct-action strategies

of environmental NGOs, including disruptive environmental boycotts [2]. The FSC theory

of change involves enhancing conservation benefits by encouraging forest management

entities (FMEs) to adopt responsible forest management practices based on conformance

to FSC’s forest management (FM) standards, with assurance provided by third-party

independent certification body (CB) audits [3].

The costs involved in assurance are ideally balanced by market benefits gained from

selling high-demand certified products within this governance mechanism [4]. In spite of

this, the motivations of FMEs to have their operations certified are different in different

countries. They can include local market demands, environmental regulations, consumer

pressure, and the specific forest management practices prevalent in that region [5]. Differing
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national motivations, such as economic reliance on forestry, the state of sovereign rights

over forest management activities (including hunting and ranching), and varying levels of

commitment to recognizing indigenous rights have been identified as factors that shape

the extent to which FSC’s stringent environmental and social standards are supported,

implemented, or contested [6]. This means that the efficacy of this market-based instrument

depends on identifying and resolving institutional, social, and ecological externalities

that may cause market failures by distancing decision-making from actual on-the-ground

impacts [7].

Programme for the Endorsement of Forest Certification (PEFC) is another forest cer-

tification system, which, along with the FSC, offers opportunities and standards for the

voluntary certification of forests. It was started in 1999, driven by the forestry industry to

compete with FSC [6,8]. Being an umbrella certification (endorsing national level initia-

tives), it is larger than the FSC in terms of hectares of forest area certified [9]. The growth

of FSC and PEFC which is supported by NGOs and the industry, respectively, adds to

the complexity of motivations for forest certification when it comes to their impacts on

ecosystem services like biodiversity conservation.

Globally, the FSC had certified 204.4 million hectares in 94 countries in 2020 [10], but

this decreased to 160.4 million hectares in 89 countries in 2024 [11]. These areas are certified

under a nationally unique set of verifiers while adhering to globally common principles

and criteria. Figure 1 shows the distribution of the FSC-certified area as a percentage

of the total forest area just in the year 2020 [10]. After almost 30 years, it has created a

formal and informal dialogue surrounding sustainable forest management between various

stakeholder groups, including FMEs, to drive positive impacts on the ground [12], but

global relationships with biodiversity and other natural values remain to be assessed. This

is especially relevant, as 57.9% of the total known species were found in forests in 2020, out

of which 61.2% were found in countries that had FSC-certified forestlands, amounting to

35.5% of all species in the world (as reported by the International Union for Conservation

of Nature (IUCN) [13]). Business-as-usual approaches will be detrimental to conservation

efforts in light of projections showing a decrease in biodiversity [14].
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Figure 1. Global distribution of areas certified with Forest Stewardship Council’s (FSC) forest

management (FM) certification as a percentage of total forest area in a country in the year 2020 [10].

Countries with no color did not have any FSC-FM certification in 2020.

Direct analyses of possible associations between biodiversity and certified areas are

limited. When conducted, they focus on smaller geographical or temporal scales. Some note
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that the FSC system is not an adequate motivation for the forest landowners to maintain or

enhance forest cover [15]. Blackman et al. also used the Differences-in-Differences robust

methodology to determine that the FSC’s forest management certification program has no

impact on deforestation [16]. On the other hand, other studies found positive associations.

Particularly, Miteva et al. found positive social and environmental impacts of the FSC

certification using spatially explicit village-level data from Kalimantan, Indonesia [17].

Specifically, they found that FSC’s FM certification reduced deforestation by five percent in

that region. Damette and Delacote found a negative impact of certification on deforestation

on a global level and that the extent of timber extraction increases deforestation [18]. They

argued that certification may mediate (or rather soften) this relationship when the quality

of governance, including corruption, is considered. An agreement exists that the forest

certification mechanism is strengthened by parallel forest governance from governments or

people [19]. The methodology of this study follows the importance of considering such

mediating/confounding factors. For example, Maryudi shows that tenure security is a

significant hurdle to forest certification, as conflicting governance frameworks “impinge

on areas currently managed by forest concessions” [20]. According to Romero et al., to

effectively assess the role of forest certification, it is crucial to have knowledge about the

political economy of the forest sector, land use change, and the temporal dynamics of

certification [21]. Other possible sources and mediating pathways of heterogeneity in the

role of forest certification, in general, and FSC, in particular, could be socio-ecological factors,

including tree cover loss [22], agricultural growth [23], and population density [24,25].

Similar factors affecting biodiversity could include politico-economic drivers such as the

gross domestic product (GDP) [23,26], corruption [27,28], and natural resource rents [29,30].

The FSC-FM certification incorporates principles of sustainable forest management that

inherently prioritize biodiversity through criteria such as maintaining high conservation

value forests, protecting rare and threatened species, and minimizing ecological damage [8].

However, as these above studies have noted, the FSC mechanisms operate within broader

socio-political and ecological frameworks that cover and affect anti-poaching initiatives,

habitat restoration, and protected area management. The influence of external factors such

as governance, enforcement, and regional conservation strategies likely plays a significant

role in the relationship between FSC-FM certifications and biodiversity conservation.

The contextual variables noted above increase the difficulty in analyzing the FSC

certification relationship with biodiversity as separate from that of activities towards com-

pliance with governmental regulations or corporate social responsibility (CSR) activities,

or other governance systems affecting biodiversity. Data availability, identifying corre-

sponding scales of analyses, and other study design difficulties are argued to be some of

the major factors that hinder undertaking impact assessments for forest certification [1].

Moreover, much of earlier research has been focused on processes instead of outcomes, and

the researchers have used data received after third-party certification audits [31].

Our study aims to understand the relationship between the presence of FSC certifi-

cation and biodiversity outcomes from a global perspective, given the heterogeneity in

country-level complex politico-ecological and economic systems. The specific objective

of this study is to assess the associations between country-level characteristics and the

relationship between the FSC-FM certification area and independently made biodiversity

outcome estimates from the IUCN. To achieve this, and considering the likely interdepen-

dence of variables, we compare the outputs of ordinary least square (OLS) models with

those of generalized random forest (GRF) models, which are arguably better at specifying

complex associations.
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2. Materials and Methods

2.1. Data Assembly

The observations on FSC certification and the percentage of threatened species from

IUCN were acquired from publicly available sources, i.e., FSC [10] and IUCN [13], respec-

tively. FSC data on the presence or absence of forest management certification and the

certified area were available from 1993 to 2021 for 94 countries. The IUCN’s data on threat-

ened species for the same countries were found to be complete only after 2008. Instead of

raw hectares, the FSC-FM-certified areas were used as a percentage of the total forest area

(source: Food and Agriculture Organization, FAO [32]) in a country in a given year. The

percentage of threatened species was calculated from the numbers of species assessments

(terrestrial forest-based: plants and animals), following IUCN [33], formulated as

Percent Threatened Species = ((Critically Endangered + Endangered +

Vulnerable)/(Total assessed − Extinct − Data Deficient)) × 100,
(1)

IUCN has a “forest-based” option to select in the search filters under ‘habitats’ [13].

We do not use the ‘Red List Index’ in our analysis, as it is not separately available for

forest-based species in the IUCN summary tables. Tree cover loss was calculated as a

percentage of the total forest available in each country in a given year [34], while agri-

cultural land was used as a percentage of the total land (source: FAO [33]). The data

on economic and social dimensions relevant to this study were collected from the World

Bank. Specifically, observations on the perception of the Control of Corruption index from

the World Governance Indicators [35], the annual percent growth of GDP per capita [36],

population density (the number of people per square km) [37], and natural resource rents

(as a percentage of GDP) [38] were collected for each country for the required years. The

natural-resource rent data included revenues from oil, natural gas, coal, and forestry;

therefore, two different variables—non-forestry rent (containing oil, natural gas, and coal

rents) and forestry rent—were used in the models to compare patterns within the total

natural rents [39]. Observations for Taiwan, Eswatini, and Liechtenstein could not be

used for statistical modeling, as data on several covariates, including GDP, tree cover loss,

rents, and certification, were missing. Moreover, agricultural and rent observations for the

year 2020 were not published yet, so the analyses were kept restricted to 2008–2019 across

91 countries.

The dataset includes observations from 91 countries over 12 years (2008–2019), result-

ing in a total of 1092 data points. To ensure the sample size is statistically sufficient, we

conducted a post hoc statistical power analysis, considering the number of predictors in

the regression and random forest models. The analysis confirmed that the dataset provides

adequate statistical power (>0.80) to detect medium-to-large effect sizes at a significance

level of 0.1. Moreover, the geographic, ecological, and governance diversity in the dataset

aligns with established practices in cross-country analyses of biodiversity conservation and

forest governance. This combination of temporal depth, geographic breadth, and statistical

adequacy underpins the reliability and generalizability of our findings.

2.2. Statistical Methods—Ordinary Least Square (OLS)

We use the percentage of threatened species as the dependent variable and the per-

centage of FSC-certified area as the explanatory variable, while all other variables are

considered control variables. We first ran simple heteroskedasticity and cluster-corrected

OLS regressions, initially with only year as a fixed effect and then with both year and

country as fixed effects to verify whether the estimates of the chosen independent variables

show more cross-country or more within-country variation. Simple ordinary least square
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regression (OLS) models were built, once with both year and country-fixed effects and again

with only year effects, to assess the patterns in variable estimates and their significance.

This was performed to verify whether the estimates of the chosen independent variables

showed more cross-country or more within-country variation. Only heteroskedasticity

and autocorrelation corrected robust standard errors were used in all the regression and

other models. Under conditions of autocorrelation and heteroscedasticity, the usual OLS

estimators remain unbiased, linear, and asymptotically normally distributed but lose the

minimum variance property among all linear unbiased estimators [40]. Different combina-

tions of these variables were used in modeling using the step-wise regression methodology.

The full regression equation for the two-way fixed effects model was as follows:

Percent Threatened Species (i,j) = dCountry (i) + dYear (j) + Percent tree cover loss (i,j) + Percent agricultural

land (i,j) + GDP per capita percent growth (i,j) + Population density (i,j) + Corruption control perception (i,j) +

Non-forestry rent (i,j) + Forestry rent (i,j) + Percent FSC-certified area (i,j) + dFSCcertification (i,j),

(2)

where i denotes the country, and j denotes the year.

2.3. Generalized Random Forest

The second part of the analysis involved training random forests, an ensemble learning

methodology in which random subsets of observations are used to test which independent

variables can partition the samples most effectively [41] using both full and country-level

modeling, as suggested by Athey and Wager [42].

Amit and German introduced the core idea of the ‘random forest’, an ensemble

learning methodology, in which a random subset of observational data is used to test

which independent variables can partition the samples in the most effective way, creating a

decision-tree of effects [41]. According to Breiman, estimates of effects are determined by

averaging all the estimates in individual trees [43]. The ‘causal forest’ methodology of the

generalized random forest (GRF) builds individual trees using greedy recursive partitioning

and is randomized using bootstrap (or subsample) aggregation such as classical random

forests. However, it is different in that, instead of the kernel weighting function, an

adaptive weighting function is used to identify partitions and capture heterogeneity in the

estimated average treatment effects using covariate-based conditional average treatment

effects (CATEs) [44]. In the context of covariates, CATEs in GRF are informative, as they

help uncover the varying treatment effects within different subgroups of the population

defined by specific covariate values, enabling a comprehensive understanding of how the

treatment variable (in our case: presence/absence of FSC-FM) interacts with covariates

(control variables noted above) to influence the outcome variable (percent threatened

species here).

The causal forest approach in GRF offers several advantages over OLS regression

when estimating effects. Unlike OLS, which assumes linearity and strict parametric rela-

tionships between variables, the causal forest approach can capture non-linear and complex

relationships without making strong assumptions about the underlying data distribution.

Unlike OLS, the causal forest explicitly considers a treatment assignment as a split criterion,

enabling the estimation of effects while accounting for confounders1, which is very im-

portant in the case of potentially complex relationships involved in the scale and scope of

this study. This is achieved by GRF’s ability to provide feature importance measures. This

becomes particularly important when there are multiple confounders present, as GRF’s

feature importance can help disentangle the effects of various predictors, including the

confounders, and provide a comprehensive understanding of their relative importance in

predicting the outcome, thereby addressing potential confounding and gaining deeper in-

sights into the data. By leveraging the power of random forests, the causal forest approach
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provides a flexible and robust framework for causal inference that surpasses the limitations

of OLS in capturing complex and interdependent relationships in observational data.

We used the stepwise regression models from Equation (2) to train our data, using

the grf package in R (version 2024.12.0+467) (a detailed algorithm is provided by Athey

and Wager [42]). We trained a ‘pilot’ raw random forest with all covariates first, and a

second causal forest on only those covariates, which showed a higher number of splits in

the pilot forest trees. As suggested by Athey et al. [44], we trained both forests to reduce

the out-of-bag error (of subsamples not used to train main forests) using (i) 2000, 4000, 6000,

8000, 10,000, and 12,000 trees, (ii) using the ‘mtry’ parameter (how many covariates are

used to construct splits) as min(sqrt(p) + 20, p), where p is the number of variables, and

(iii) honesty fractions (fraction of samples used in selecting tree split) from 0.5 to 0.8. We

recorded the importance of each covariate in the first raw forest, as denoted by the percent

share of the number of splits, and then trained a second forest on only those features that

saw a reasonable number of splits in the first step. Plotting the distributions of CATEs

to explore directions of heterogeneity in the FSC-FM association with biodiversity, we

also tested whether the difference between high and low estimates, conditioned on each

covariate, was statistically significant. Finally, we trained a third forest using country-level

data averaged out over all the years under analysis to assess whether an analysis focusing

on country-level associations can capture heterogeneity signals better than the full forest.

We tested heterogeneity in the data captured by the three forests using the ‘best linear

predictor’ methodology developed by Chernozhukov et al. [45], which fits CATE as a

linear association of the out-of-bag causal forest estimates [42]. It provides information on

whether the predictions are correct (if the coefficient of ‘mean.forest.prediction’ is 1 and

significant), and whether the forest could capture the underlying heterogeneity signals in

the data (if the coefficient of ‘differential.forest.predictions’ is 1 and statistically significant).

To empirically demonstrate that GRF performs better than OLS, we compared the

results using mean squared error (MSE) and R2. MSE quantifies the average squared

difference between predicted values and actual values. Lower MSE values indicate better

model performance. By comparing the MSE of the GRF and OLS models, we assess

which model provides more accurate predictions. R2, also known as the coefficient of

determination, measures the proportion of variance in the dependent variable that is

explained by the independent variables. Higher R2 values indicate a better fit of the model

to the data. We calculated R2 for both GRF and different combinations of the OLS models

and compared their values to determine which model better captures the relationships in

the data.

3. Results

3.1. Data Distributions

Table 1 gives the distribution of each variable considered in the analysis, including

their measurement units, mean values, and standard deviation (SD). A complete list of the

91 countries under analysis is given in Appendix A.

To explore regional distributions, we calculated the average percentages of threatened

species and FSC-certified areas (as % of forest area) for all the regions that the 91 countries

fall in. Figure 2 illustrates the variations in the average percentages of threatened species

and FSC-certified areas from 2008 to 2019 for the selected regions using a stacked bar chart.

Figure 2 clearly shows the divergences between the two variables. Europe has a high

FSC-certified area, but the percentage of threatened species is higher in the tropical regions.

The likely reason why the percentage of threatened species is low could be because the

presence of FSC is greater in the developed world, where the percentage of threatened

species is relatively low.
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Table 1. The distribution of each variable considered in the analysis of associations between globally

threatened species and the Forest Stewardship Council’s (FSC) forest management certifications.

GDP = gross domestic product.

Name of Variable Mean Value Standard Deviation

Percent threatened species (%) 16.54 14.56
FSC-certified area (% of forest area) 11.59 20.06

GDP per capita growth (%) 1.99 3.51
Non-forestry rents (% of GDP) 2.78 5.49

Forestry Rents (% of GDP) 1.42 2.78
Control of Corruption (Index) 0.15 1.04

Population Density 106.09 115.76
Percent Agricultural Land (% of total land) 39.29 19.19

Tree Cover Loss (% of forest area) 0.71 0.87

 

ff

ff
ff
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ff

Figure 2. Average percentage of threatened species and Forest Stewardship Council (FSC) forest

management (FM) certified area (as % of forest area) from 2008 to 2019 across different global regions,

covering 91 countries with existing FSC FM certifications.

3.2. OLS Regression of FSC-FM Certification Presence on Biodiversity

According to regression modeling, in the best model based on MSE and R2, many

covariates became statistically significant when country-level fixed effects were not in-

cluded in the model (Table 2). When year-fixed effects were included, increasing GDP

per capita, population density, and percent tree cover loss were positively associated with

the percent of threatened species. Moreover, the percentage of FSC-certified areas and

the perception of control of corruption were negatively associated. However, the same

covariates were not significant after including country-level fixed effects. The interaction

between resource rents and control of corruption was only significant for non-forestry rents

and had a positive estimate. The two-way fixed effects model estimates in Table 2 indicate

the importance of non-forestry rent, which was statistically significant in the two-way fixed

effects model despite the inclusion of country fixed effects; it was positively associated with

the percent threatened species.
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Table 2. Findings of ordinary least square regression model. Dependent variable: percentage of

threatened species. Estimates and heteroskedasticity and cluster-corrected robust standard errors (in

the brackets) are noted for each independent variable.

Independent Variables Two-Way Fixed Effects Only Year Fixed Effects

FSC certification presence (0,1) −1.68 (2.12) −0.52 (1.58)
FSC-certified area (% of Forest) 0.05 (0.03) −0.11 (0.02) ****
GDP per capita percent growth 0.13 (0.09) 0.27 (0.11) **
Non-forestry rents (% of GDP) 0.36 (0.12) ** 0.12 (0.03) **

Forestry rents (% of GDP) −0.07 (0.01) −0.16 (0.12)
Control of corruption −0.21 (3.21) −0.49 (0.23) ****

Interaction of Corruption Control and Non-forestry Rents 0.36 (0.15) 0.38 (0.11) ***
Interaction of Corruption Control and Forestry Rents −0.01 (0.34) 0.03 (0.21)

Population Density 0.02 (0.05) 0.007 (0.004) *
Percent Agricultural Land 0.10 (0.25) −0.001 (0.02)

Tree Cover Loss (% of Forest Area) 0.75 (0.73) 2.13 (0.78) ***

R-squared 0.3542 0.1927
Mean squared error 76.29 89.15

Number of observations 1087 1087

p values = *: 0.1, **: 0.05, ***: 0.01, ****: 0.001.

3.3. Generalized Random Forest: Variable Importance, Calibration, and Best Model Results

Both in the full forest with selected variables and the country-level forests, non-forestry

rent was the most split variable, indicating its importance in the recursive partitioning

algorithm. It amounted to around 53% of the total splits in the country-level forest. The

percentage of tree cover was consistently the second most important variable in this

model (29.4%), and the percentage of FSC-certified area was also important (9.6%). Other

important variables in the country-level forest were the interaction between resource rent

and control of corruption (8.1%) and population density (7.4%).

Table 3 contains the results of the ‘best linear predictor’ methodology of Chernozhukov

et al. [46] to assess whether the trained forest was well-calibrated. The predictor indicates

that the conditional average treatment effects, i.e., CATEs could be fitted as a linear as-

sociation of the out-of-bag causal forest estimates using our model (the coefficient of

mean.forest.prediction was 1 and statistically significant) and that the country-level for-

est could identify heterogeneous linkage signals in the data (the coefficient of differen-

tial.forest.predictions was also very close to 1 and significant for both country-level forests)

(Table 3).

Table 3. Forest calibrations for best model combinations of Equation (2)2.

Selected Variables’ Forest Country-Level Forest

Mean.forest.prediction 0.65 (1.21) 1.004 (0.08) ****
Differential.forest.prediction −5.4 (1.96) 1.13 (0.12) ****

p values = ****: 0.001.

Figure 3 shows the distribution of high to low CATEs, along independently taken

covariates that were statistically significant (p < 0.05). Association of FSC certification pres-

ence with biodiversity conservation may be higher (meaning less percentage of threatened

species) in countries with a higher loss of tree cover, higher population density, lower

extraction of non-forestry resources, higher perception of control of corruption, and higher

percent FSC-certified area. The association between FSC certification presence and bio-

diversity, along with the interaction term of natural resource rent and corruption control

may exhibit a U shaped relationship; FSC presence may be negatively associated with
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biodiversity in countries with ill-governed high extraction and slightly less negatively for

those with extremely well-governed high extraction countries with an inflection at zero.

 

ff

ff
−

−
−

Figure 3. Statistically significant distributions of conditional average treatment effects (CATEs)

of Forest Stewardship Council’s forest management (FSC-FM) presence on percentage threatened

species, along with six covariates (a–f), based on the best country-level generalized random forest

(GRF) model for data across 91 countries between 2008 and 2019. GDP: gross domestic product; WGI:

Worldwide Governance Indicator.

Table 4 contains the results of country-level forests showing the estimates and robust

standard errors for modification in the association between FSC certification presence and

biodiversity. Figure 3 shows the distribution of CATEs when covariates are considered

independently, while Table 4 shows a modification in the association when other covariates

are controlled for. The association between FSC certification and biodiversity is positive

in contexts with higher percentage of FSC area and higher tree cover loss but negative

when natural resource rent and its interaction with a perception of corruption control

increases. The mean squared error of the GRF models was lower, and R2 was higher than

both OLS models.

Table 4. Results of modifications in the association between FSC certification and biodiversity (2008

to 2019) as identified by the country-level forest. Dependent variable: Percent threatened species.

Treatment variable: FSC certification (presence/absence)3.

Independent Variables Effect Modification

FSC-certified area (% of forest area) −0.15 (0.04) ****
GDP per capita percent growth 0.82 (0.21)
Non-forestry rents (% of GDP) 0.96 (0.29) ****

Forestry rents (% of GDP) −0.03 (0.36)
Control of corruption −0.51 (1.02)

Interaction between Corruption Control and Non-forestry Rents 0.64 (0.42) **
Interaction between Corruption Control and Forestry Rents −0.25 (0.36)

Population density −0.007 (0.006)
Percentage of agricultural land 0.03 (0.04)

Tree cover loss (% of forest area) −4.82 (1.56) ***
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Table 4. Cont.

Independent Variables Effect Modification

R-squared 0.5768
Mean squared error 36.75

Number of observations 91

p values = **: 0.05, ***: 0.01, ****: 0.001.

4. Discussion

Using a novel machine-learning algorithm based om generalized random forests, this

study analyzed the linkages between FSC-FM certifications and biodiversity loss from

a global perspective and successfully identified country-level factors that moderate the

estimated association. By comparing the results from the OLS regressions with fixed

effects and the findings from the random forest analyses, we can identify and validate

the linkages and associations between the variables. The OLS regressions establish the

statistical significance and directionality of the relationships. At the same time, the random

forest analyses provide insights into the relative importance and conditional effects of the

variables in the relationship between FSC-FM and biodiversity.

Our findings contribute to the existing literature by demonstrating the nuanced bio-

diversity relationship with FSC certifications across diverse governance contexts. While

prior studies have emphasized the variability in certification implementation based on

different country-level factors [21], our analysis using GRF provides novel insights into

how country-specific factors are associated with these outcomes.

4.1. OLS Regression Results

Year-fixed effects control factors that affect biodiversity consistently across all countries

in a given year. They control for time-specific factors that may influence the outcome

variable but are constant within each country. In the OLS model with year-fixed effects,

we find that a decrease in the GDP per capita, population density, and the percentage

of tree cover loss, along with an increase in the percentage of certified area, and the

perception of control of corruption may be associated with higher biodiversity. Lower

GDP per capita suggests that economic development that focuses on sustainable practices

and reduces ecological footprints can contribute to higher biodiversity. This highlights

the need to balance economic growth with conservation efforts to minimize the negative

relationships between ecosystems and species. Lower population density indicates that

areas with lower human population pressure are associated with higher biodiversity,

underscoring the importance of managing human activities and preserving natural habitats.

A reduction in the percentage of tree cover loss signifies the preservation and restoration

of forests, which are critical for supporting diverse ecosystems and species. Promoting

sustainable forest management practices and mitigating deforestation are imperative for

maintaining biodiversity. Additionally, a higher percentage of FSC-FM-certified areas

indicates that responsible and sustainable forest management practices support biodiversity.

This emphasizes the value of certification schemes in promoting conservation measures and

ensuring the long-term health of forest ecosystems. Furthermore, the positive association

between the perception of control of corruption and biodiversity highlights the importance

of good governance and anti-corruption measures in protecting ecosystems. Effective

governance can deter illegal activities that harm biodiversity and support sustainable

resource management.

As this is a global study, it is important to consider these associations, as they can

provide insights into the within-country dynamics of biodiversity conservation. There

is likely a wide range of differences between countries in our study, which results in the
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non-significance of these variables when country effects are included to assess cross-country

dynamics. Future studies can categorize the countries into different groups and test the

importance of country-level factors, such as geographical characteristics, governance, or

cultural and political norms, using a two-way fixed effects model.

It is relevant to note that the non-forestry rent globally was the only statistically sig-

nificant variable in the two-way fixed effects model. It was also the most crucial variable

at the national level, both in its direct association with biodiversity and as a moderating

factor in the association between forest certification and biodiversity loss. Moreover, this

association does not seem to exist for just forest rents, as none of the estimates were found

to be significant. This indicates that forest extractions per se might not be important to

the association of FSC-FM with biodiversity, but other natural resources may play a sig-

nificant role. Total and forestry natural resource rents have been known to have different

moderating influences due to their respective contexts and roles in globalization [1]. This

means that the international supply chains and trade networks for natural resource rent

for oil and gas are higher in volume compared to forest products, indicating possible

stronger linkages with biodiversity. This might be one of the reasons why, in our models,

forest rent was not significant, but natural resource rent was. Future research must include

relevant variables from dimensions of globalization and international trade—such as trade

flows, cross-country regulations, foreign direct investments, etc.—to make the modeling

more robust, as biodiversity outcomes are known to be exported from high-income to low-

income countries [46]. Furthermore, including the forest-related dimension of economic

inequality—including income disparities, poverty levels, land ownership and control, the

human development index, etc.—along with corruption is also important, as they are

known to increase threatened species [47], likely through an increase in rent-seeking activi-

ties. The linkage found in our study aligns with the findings of Okada and Samreth [30],

who found that forest rents are not broadly associated with corruption, unlike total natural

resource rents, which include oil, natural gas, coal, and forestry.

4.2. Implications of Generalized Random Forest Modeling

In our study, the application of GRF analysis allowed us to explore the confounding

nature of variables and uncover crucial insights regarding the relationship between the

presence of FSC-FM certification and biodiversity conservation. GRF analysis offers several

advantages over traditional OLS regression, as it enables the identification of non-linear

relationships, interactions, and heterogeneity in the data, providing a more comprehensive

understanding of the underlying dynamics. By leveraging GRF, we can disentangle the

intricate relationships among variables and gain valuable insights that may have been

obscured by confounding effects. Our analysis focused on the treatment variable of FSC-

FM presence/absence and considered both the full forest with selected variables and the

country-level forests. This allowed us to account for potential confounding factors and

capture the complexity of the relationships involved. By examining the variable importance

measures obtained from GRF, we identified key factors that play a significant role in the

association between FSC certification and biodiversity outcomes.

Among the significant variables identified, non-forestry rent emerged as the most

influential, indicating its importance in the recursive partitioning algorithm. It accounted

for approximately 53% of the total splits in the country-level forest, underscoring its

confounding nature and potential to distort the relationship between FSC certification and

biodiversity conservation. Additionally, the percentage of tree cover consistently ranked

as the second most important variable (29.4%), highlighting its confounding effect on

the association of interest. The percentage of FSC-FM-certified area also emerged as an

important factor (9.6%), indicating its potential to confound the relationship between FSC
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certification and biodiversity outcomes. Furthermore, the interaction of resource rent with

control of corruption (8.1%) and population density (7.4%) contributed to the confounding

nature of the variables under investigation.

By explicitly considering the confounding effects of these variables, we gain a clearer

understanding of the association between FSC-FM presence and biodiversity conservation.

Figure 3 displays the distribution of conditional average treatment effects (CATEs), along

independently taken covariates that were statistically significant (p < 0.05). This analysis

reveals that confounding variables can potentially influence the direction and magnitude

of the relationship between FSC certification and biodiversity outcomes. It suggests that

the actual association of FSC certification with biodiversity may be masked or distorted

without adequately accounting for these confounding factors. Table 4 complements the

analysis by presenting the estimates and robust standard errors for modifications in the

association between FSC certification presence and biodiversity. The results demonstrate

that the association of FSC certification with biodiversity is positive in the context of

a higher percentage of FSC-FM-certified areas and higher tree cover loss. However, the

association becomes negative when non-forestry rent and its interaction with the perception

of corruption control increase, indicating the potential negative impact of poorly managed

resource extraction and corruption on biodiversity outcomes.

These results support the arguments that (a) FSC-FM certification likely has a posi-

tive association with biodiversity where it is most needed, possibly in developing coun-

tries, where population densities and tree cover loss are high (see Winkler et al. [48] and

Bjelle et al. [46]), and (b) enabling conditions, such as a higher perception of corruption con-

trol and lower extraction of non-forestry resources, are needed for that positive association

with FSC-FM.

The calibration results presented in Table 3 indicate that the country-level forests could

sufficiently capture the heterogeneity in the association of FSC certification with the percent

threatened species, but the full forest could not. As the fully trained model is not as well

calibrated as the country-level forest, it suggests that the model’s performance may vary

across different subgroups or levels of the data. This could indicate that the model is better

calibrated or more accurate at a broader global level (consistent across all countries) but

may exhibit inconsistencies or poorer performance when applied to more granular levels

of the data (viz., between-country associations).

4.3. Limitations

This study has important limitations that should be considered when interpreting the

findings. Firstly, FSC certifies only a small portion of global forests, which is primarily

motivated by a price premium for timber characterized by SFM. Though this process could

benefit biodiversity conservation, biodiversity conservation is mainly implemented and

supported by anti-poaching, habitat management, designation of protected areas, and

species rescue, which are part of the FSC-FM standard implementation. Nevertheless,

the association discussed in this study might be determined by other factors, which need

further study.

Secondly, the analysis is constrained by this study’s timeframe, which only covers

observations between 2008 and 2019. This limited period may not fully capture long-term

trends and dynamics in the relationship between FSC-FM certification and biodiversity

conservation. Additionally, this study does not consider the potential influence of the

global slowdown in land-use changes following the economic crisis of 2007–2009 [48].

Incorporating this temporal context would provide a more comprehensive understanding

of the association between certification and biodiversity outcomes.
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Moreover, while this study offers valuable insights at the global level, it may mask

regional variations and disparities between areas where certification is needed, and where it

has been implemented. The analysis acknowledges the lack of significant progress towards

FSC-FM certification in tropical regions (Figures 1 and 2), which are particularly important

for biodiversity conservation. Therefore, the generalizability of the findings to these high-

diversity regions may be limited. Furthermore, this study’s use of identified species under

threat and their changes as proxies for biodiversity outcomes may introduce biases. The

process of identifying threatened species may vary across different regions, potentially

leading to inconsistencies and inaccuracies in the measurement of biodiversity. This could

impact the reliability and applicability of the biodiversity measures used in the analysis.

In terms of methodologies, it is important to acknowledge the limitations of both

OLS regression and GRF. OLS regression assumes linearity and independence of variables,

which may not fully capture the complex, non-normal, and non-linear relationships in-

herent in ecological systems. On the other hand, even though the mean squared error of

GRF was lower and R2 higher, and offers flexibility and the ability to capture non-linear

associations, it is subject to potential biases and uncertainties related to the algorithm and

assumptions made during model training. These can be potential sampling bias, failing

to generalize well to unseen data through overfitting, and violating the assumption that

treatment assignment is random or quasi-random. These limitations emphasize the need

for caution when interpreting the results. Our results do not indicate causality but potential

associations, and we suggest that alternative modeling approaches or complementary ana-

lytical methods could provide additional insights into the nuanced relationship between

FSC-FM certification and biodiversity conservation.

5. Conclusions

This study highlights the critical association between FSC-FM certification and biodi-

versity conservation, providing empirical evidence of its impact across diverse geographic

regions and governance contexts. By employing the GRF methodology, which is able to

navigate complex and interdependent variables, our analysis reveals that while FSC-FM

certification has a measurable positive effect on biodiversity, as indicated by lower percent-

ages of threatened species, this association is nuanced and varies significantly by region

and different factors. It is clearly necessary to incorporate socioeconomic and ecological

knowledge for efficiently developing strategies for biodiversity management in the context

of FSC certifications [49].

Key findings include the association between tree cover loss, non-forestry resource

rents, and governance indicators, such as population densities and corruption control on

the effectiveness of FSC-FM certification in promoting biodiversity. Our study highlights

the indirect association of FSC-FM certification with biodiversity conservation through

its alignment with the principles of sustainable forest management, despite the relatively

small proportion of forests currently certified globally. These findings contribute to the

growing literature on sustainable forest management and provide actionable insights for

policymakers, certification bodies, and conservation organizations.

Despite this study’s limitations, our results still provide valuable insights a) for FSC to

strategically plan expansion into regions with better-enabling conditions for sustainable

and responsible forest management and b) for governments to consider relevant policies

that affect enabling factors for FSC FM certifications to be successful at promoting biodi-

versity conservation, striking a balance between economic growth and the preservation

of ecosystems.
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Appendix A

Table A1. List of countries used in the analysis in this study.

Names of Countries Included in the Analysis

Argentina
Australia
Austria
Belarus
Belgium
Belize
Bolivia
Bosnia And
Herzegovina
Brazil
Bulgaria
Cambodia
Cameroon
Canada
Chile
China
Colombia

The Republic of Congo
Costa Rica
Croatia
Czech Republic
Denmark
Dominican Republic
Ecuador
Estonia
Fiji
Finland
France
Gabon
Germany
Ghana
Greece

Guatemala
Guyana
Honduras
Hungary
India
Indonesia
Ireland
Italy
Japan
Kenya
Republic Of Korea
Kyrgyzstan
Laos
Latvia
Lithuania
Luxembourg

Madagascar
Malaysia
Mexico
Morocco
Mozambique
Namibia
Nepal
Netherlands
New Zealand
Nicaragua
Norway
Panama
Papua New
Guinea
Paraguay
Peru
Philippines

Poland
Portugal
Romania
Russia
Rwanda
Serbia
Sierra Leone
Slovakia
Slovenia
Solomon Islands
South Africa
Spain
Sri Lanka
Suriname
Sweden
Switzerland

Thailand
Turkey
Uganda
Ukraine
United Kingdom
United States
Uruguay
Venezuela
Vietnam
Zambia
Zimbabwe

United Republic of Tanzania

Notes

1 Confounders refer to variables that are associated with both the treatment variable and the outcome variable, posing a risk of bias

by potentially influencing the relationship between the treatment and the outcome.
2 Estimates, along with heteroskedasticity and cluster-corrected robust standard errors (in the brackets) are noted for each

model prediction.
3 Estimates and heteroskedasticity and cluster-corrected robust standard errors (in the brackets) are noted for each indepen-

dent variable.
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